python模型继续训练_tensorflow模型继续训练 fineturn实例

本文展示了如何使用TensorFlow在已训练模型基础上进行finetune,通过恢复模型权重,调整训练数据,继续优化求解新的问题。示例中,模型首先解决了一个简单的线性方程求解问题,然后在新的目标值下继续训练,最终得到更新后的权重和偏置。
摘要由CSDN通过智能技术生成

解决tensoflow如何在已训练模型上继续训练fineturn的问题。

训练代码

任务描述: x = 3.0, y = 100.0, 运算公式 x×w+b = y,求 w和b的最优解。

# -*- coding: utf-8 -*-)

import tensorflow as tf

# 声明占位变量x、y

x = tf.placeholder("float", shape=[none, 1])

y = tf.placeholder("float", [none, 1])

# 声明变量

w = tf.variable(tf.zeros([1, 1]),name='w')

b = tf.variable(tf.zeros([1]),name='b')

# 操作

result = tf.matmul(x, w) + b

# 损失函数

lost = tf.reduce_sum(tf.pow((result - y), 2))

# 优化

train_step = tf.train.gradientdescentoptimizer(0.0007).minimize(lost)

with tf.session() as sess:

# 初始化变量

sess.run(tf.global_variables_initializer())

saver = tf.train.saver(max_to_keep=3)

# 这里x、y给固定的值

x_s = [[3.0]]

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值