MapReduce 模型是 Map 模型的扩展,新增 Reduce接口,需要实现 MapReduceJobProcessor。
注意事项
MapReduce 模型只有一个 Reduce,所有子任务完成后会执行 Reduce 方法,可以在 Reduce 方法中返回该任务示例的执行结果,作为工作流的上下游数据传递。如果有子任务失败,Reduce
不会执行。Reduce 失败,整个任务示例也失败。
Scheduler X 不保证子任务一定执行一次,在特殊条件下会 failover,可能会导致子任务重复执行,需要业务方自己实现幂等。
Scheduler X 使用的是 Hessian 序列化框架,目前不支持 LocalDateTime 和 BigDecimal。子任务中如果有如上两个数据结构,请替换其他的数据结构(特别是 BigDecimal,序列化不会报错,反序列化会变成 0)。
接口
接口
解释
是否必选
ProcessResult process(JobContext context)
每个子任务执行业务的入口,需要从 context 里获取 taskName,自己判断是哪个子任务,进行相应的逻辑处理。执行完成后,需要返回 ProcessResult。
是
ProcessResult map(List extends Object> taskList, String taskName)
执行 map 方法可以把一批子任务分布式到多台机器上执行,可以 map 多次。如果 taskList 是空,返回失败。执行完成后,需要返回 ProcessResult。
是
void kill(JobContext context)
前端 kill 任务会触发该方法,需要用户自己实现如何中断业务。
否
执行方式
并行计算:最多支持 300 任务,有子任务列表。
注意 秒级别任务不要选择并行计算。
内存网格:基于内存计算,最多支持 50,000 以下子任务,速度快。
网格计算:基于文件计算,最多支持 1,000,000 子任务。
高级配置
发送 500 条消息的 Demo 示例(适用于 MapReduce 模型)
@Component
public class TestMapReduceJobProcessor extends MapReduceJobProcessor {
@Override
public ProcessResult process(JobContext context) throws Exception {
String taskName = context.getTaskName();
int dispatchNum=500;
if (isRootTask(context)) {
System.out.println("start root task");
List msgList = Lists.newArrayList();
for (int i = 0; i <= dispatchNum; i++) {
msgList.add("msg_" + i);
}
return map(msgList, "Level1Dispatch");
} else if (taskName.equals("Level1Dispatch")) {
String task = (String)context.getTask();
System.out.println(task);
return new ProcessResult(true);
}
return new ProcessResult(false);
}
@Override
public ProcessResult reduce(JobContext context) throws Exception {
return new ProcessResult(true, "TestMapReduceJobProcessor.reduce");
}
}
处理单表数据的 Demo 示例(适用于 Map 或 MapReduce 模型)
@Component
public class ScanSingleTableJobProcessor extends MapJobProcessor {
@Service
private XXXService xxxService;
private final int PAGE_SIZE = 500;
static class PageTask {
private long startId;
private long endId;
public PageTask(long startId, long endId) {
this.startId = startId;
this.endId = endId;
}
public long getStartId() {
return startId;
}
public long getEndId() {
return endId;
}
}
@Override
public ProcessResult process(JobContext context) throws Exception {
String tableName = context.getJobParameters(); //多个 Job 后端代码可以一致,通过控制台配置 Job 参数表示表名。
String taskName = context.getTaskName();
Object task = context.getTask();
if (isRootTask(context)) {
Pair idPair = queryMinAndMaxId(tableName);
long minId = idPair.getFirst();
long maxId = idPair.getSecond();
List tasks = Lists.newArrayList();
int step = (int) ((maxId - minId) / PAGE_SIZE); //计算分页数量
for (long i = minId; i < maxId; i+=step) {
tasks.add(new PageTask(i, (i+step > maxId ? maxId : i+step)));
}
return map(tasks, "PageTask");
} else if (taskName.equals("PageTask")) {
PageTask pageTask = (PageTask)task;
long startId = pageTask.getStartId();
long endId = pageTask.getEndId();
List records = queryRecord(tableName, startId, endId);
//TODO handle records
return new ProcessResult(true);
}
return new ProcessResult(false);
}
private Pair queryMinAndMaxId(String tableName) {
//TODO select min(id),max(id) from [tableName]
return new Pair(1L, 10000L);
}
private List queryRecord(String tableName, long startId, long endId) {
List records = Lists.newArrayList();
//TODO select * from [tableName] where id>=[startId] and id
return records;
}
}
处理分库分表数据的 Demo 示例(适用于 Map 或 MapReduce 模型)
@Component
public class ScanShardingTableJobProcessor extends MapJobProcessor {
@Service
private XXXService xxxService;
private final int PAGE_SIZE = 500;
static class PageTask {
private String tableName;
private long startId;
private long endId;
public PageTask(String tableName, long startId, long endId) {
this.tableName = tableName;
this.startId = startId;
this.endId = endId;
}
public String getTableName() {
return tableName;
}
public long getStartId() {
return startId;
}
public long getEndId() {
return endId;
}
}
@Override
public ProcessResult process(JobContext context) throws Exception {
String taskName = context.getTaskName();
Object task = context.getTask();
if (isRootTask(context)) {
//先分库
List dbList = getDbList();
return map(dbList, "DbTask");
} else if (taskName.equals("DbTask")) {
//根据分库去分表
String dbName = (String)task;
List tableList = getTableList(dbName);
return map(tableList, "TableTask");
} else if (taskName.equals("TableTask")) {
//如果一个分表也很大,再分页
String tableName = (String)task;
Pair idPair = queryMinAndMaxId(tableName);
long minId = idPair.getFirst();
long maxId = idPair.getSecond();
List tasks = Lists.newArrayList();
int step = (int) ((maxId - minId) / PAGE_SIZE); //计算分页数量
for (long i = minId; i < maxId; i+=step) {
tasks.add(new PageTask(tableName, i, (i+step > maxId ? maxId : i+step)));
}
return map(tasks, "PageTask");
} else if (taskName.equals("PageTask")) {
PageTask pageTask = (PageTask)task;
String tableName = pageTask.getTableName();
long startId = pageTask.getStartId();
long endId = pageTask.getEndId();
List records = queryRecord(tableName, startId, endId);
//TODO handle records
return new ProcessResult(true);
}
return new ProcessResult(false);
}
private List getDbList() {
List dbList = Lists.newArrayList();
//TODO 返回分库列表
return dbList;
}
private List getTableList(String dbName) {
List tableList = Lists.newArrayList();
//TODO 返回分表列表
return tableList;
}
private Pair queryMinAndMaxId(String tableName) {
//TODO select min(id),max(id) from [tableName]
return new Pair(1L, 10000L);
}
private List queryRecord(String tableName, long startId, long endId) {
List records = Lists.newArrayList();
//TODO select * from [tableName] where id>=[startId] and id
return records;
}
}
处理 50 条消息并且返回子任务结果由 Reduce 汇总的 Demo 示例(适用于 MapReduce 模型)
@Component
public class TestMapReduceJobProcessor extends MapReduceJobProcessor {
@Override
public ProcessResult process(JobContext context) throws Exception {
String taskName = context.getTaskName();
int dispatchNum = 50;
if (context.getJobParameters() != null) {
dispatchNum = Integer.valueOf(context.getJobParameters());
}
if (isRootTask(context)) {
System.out.println("start root task");
List msgList = Lists.newArrayList();
for (int i = 0; i <= dispatchNum; i++) {
msgList.add("msg_" + i);
}
return map(msgList, "Level1Dispatch");
} else if (taskName.equals("Level1Dispatch")) {
String task = (String)context.getTask();
Thread.sleep(2000);
return new ProcessResult(true, task);
}
return new ProcessResult(false);
}
@Override
public ProcessResult reduce(JobContext context) throws Exception {
for (Entry result : context.getTaskResults().entrySet()) {
System.out.println("taskId:" + result.getKey() + ", result:" + result.getValue());
}
return new ProcessResult(true, "TestMapReduceJobProcessor.reduce");
}
}