信号分析习题
三角波脉冲信号如图1-1所示,其函数及频谱表达式为
求:当时,求的表达式。
解:函数图形见图1-5所示。
图1-5
一时间函数f(t)及其频谱函数F(ω)如图1-2所示已知函数,示意画出x(t)和X(ω)的函数图形。当时,X(ω)的图形会出现什么情况?(为f(t)中的最高频率分量的角频率)
解:见图1-6所示。图(a)为调幅信号波形图,图(b)为调幅信号频谱图。当 时,两边图形将在中间位置处发生混叠,导致失真。
图1-3所示信号a(t)及其频谱A(f)。试求函数的傅氏变换F(f)并画出其图形。
解:由于
并且
所以
F(f)的频谱图见图1-7所示:
4.求图1-4所示三角波调幅信号的频谱。
解:图1-8所示调幅波是三角波与载波 的乘积。两个函数在时域中的乘积,对应其在频域中的卷积,由于三角波频谱为:
余弦信号频谱为
卷积为
例1.判断下列每个信号是否是周期的,如果是周期的,确定其最小周期。
(1) (2)
(3) (4)
解:(1)是周期信号,;(2)是周期信号,;
(3)是非周期信号,因为周期函数是定义在区间上的,而是单边余弦信号,即t>0时为余弦函数,t<0无定义。属非周期信号;
(4)是非周期信号,因为两分量的频率比为,非有理数,两分量找不到共同的重复周期