二维均匀分布的边缘密度函数_均匀分布

本文探讨二维均匀分布的性质,包括概率密度函数、分布函数和生成函数。均匀分布,又称矩形分布,其概率密度在指定区间内是等可能的。通过分析,我们得出一阶矩(均值)、二阶矩(方差)等统计属性,并展示了如何计算这些属性。此外,代码部分可能提供了实现相关计算的示例。
摘要由CSDN通过智能技术生成

0293ad008e14f655ef2aede06d7632d4.png

在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

5f46eba764a4a66da8cf45a4fe2777e4.png

性质

概率密度函数

均匀分布的概率密度函数为:

在两个边界a和b处的

的值通常是不重要的,因为它们不改变任何
的积分值。 概率密度函数有时为0,有时为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值