概论_第3章_二维随机变量__均匀分布

一 定义

设D为平面上的有界区域, 其面积为S, 且S>0, 如果二维随机变量(X, Y)的概率密度为

则称(X, Y) 服从区域D上的均匀分布, 记作(X , Y) ~.

看其两个特殊情形:

  1. D为矩形区域 , , 此时

  1. D为圆形区域, (X, Y)在以原点为圆心、R为半径的圆域上服从均匀分布, 则(X, Y)的概率密度为

二 看例题

设(X, Y) 服从区域D上的均匀分布, 其中D: x ≥y, 0≤x≤1, y≥0, 求P{X+Y ≤ 1}.

解:D区域的示意图如下

D的面积S = 0.5, 所以(X, Y)的概率密度(注意是说密度,没说密度对应的区域)为

事件{X+Y 1}意味着随机点(X, Y)落在区域

P{X+Y1} =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值