【概率论基础进阶】多维随机变量及其分布-二维均匀分布和二维正态分布

二维均匀分布

定义:如果二维连续型随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为
f ( x , y ) = { 1 A ( x , y ) ∈ G 0 其他 f(x,y)=\left\{\begin{aligned}& \frac{1}{A}&(x,y) \in G\\&0&其他\end{aligned}\right. f(x,y)= A10(x,y)G其他
其中 A A A是平面有界区域 G G G的面积,则称 ( X , Y ) (X,Y) (X,Y)服从区域 G G G上的均匀分布

( X , Y ) (X,Y) (X,Y) G G G上服从均匀分布, D D D G G G中的一个部分区域,记它们的面积分别为 S D S_{D} SD S G S_{G} SG,则 P { ( X , Y ) ∈ D } = S D S G \begin{aligned} P \left\{(X,Y)\in D\right\}=\frac{S_{D}}{S_{G}}\end{aligned} P{ (X,Y)D}=SGSD

例1:设二维连续型随机变量 ( X , Y ) (X,Y) (X,Y)在区域 D D D上服从均匀分布,其中
D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D=\left\{(x,y)|x^{2}+y^{2} \leq 1\right\} D={ (x,y)x2+y21}

  • X X X的边缘密度 f X ( x ) f_{X}(x) fX(x)
  • 条件概率密度 f Y ∣ X ( y ∣ x ) f_{Y|X}(y|x) fYX(yx)

区域 D D D是半径为 1 1 1的单位圆,其面积应为 π \pi π,因此 ( X , Y ) (X,Y) (X,Y)的联合密度
f ( x , y ) = { 1 π x 2 + y 2 ≤ 1 0 其他 f(x,y)=\left\{\begin{aligned}& \frac{1}{\pi}&x^{2}+y^{2}\leq 1\\&0&其他\end{aligned}\right. f(x,y)= π10x2+y21其他

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = { ∫ − 1 − x 2 1 − x 2 1 π = 2 π 1 − x 2 − 1 ≤ x ≤ 1 0 其他 f_{X}(x)=\int_{-\infty}^{+\infty}f(x,y)dy=\left\{\begin{aligned}&\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi}=\frac{2}{\pi}\sqrt{1-x^{2}}&-1\leq x \leq 1\\&0&其他\end{aligned}\right. fX(x)=+f(x,y)dy= 1x2 1x2 π1=π21x2 01x1其他

注意这里 − 1 ≤ x ≤ 1 -1\leq x \leq 1 1x1的范围是根据 x 2 + y 2 ≤ 1 x^{2}+y^{2}\leq 1 x2+y21得到的,因此必须有等号

− 1 < x < 1 -1<x<1 1<x<1
f Y ∣ X ( y ∣ x ) = { 1 2 1 − x 2 − 1 − x 2 ≤ y ≤ 1 − x 2 0 其他 f_{Y|X}(y|x)=\left\{\begin{aligned}& \frac{1}{2\sqrt{1-x^{2}}}&-\sqrt{1-x^{2}}\leq y \leq 1-x^{2}\\&0&其他\end{aligned}\right. fYX(yx)= 21x2 101x2 y1x2其他

而这里 − 1 < x < 1 -1<x<1 1<x<1,是由于条件概率的分母边缘概率,即 f X ( x ) > 0 f_{X}(x)>0 fX(x)>0,得到的,因此必须没有等号,有等号的时候可以代入边缘概率 f X ( 1 ) = f X ( − 1 ) = 0 f_{X}(1)=f_{X}(-1)=0 fX(1)=fX(1)=0

二维正态分布

定义:如果二维连续型随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ ( − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] ) − ∞ < x < + ∞ , − ∞ < y < + ∞ \begin{aligned} f(x,y)&= \frac{1}{2\pi \sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}\exp\left(- \frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right] \right)\\ &-\infty<x<+\infty,-\infty<y<+\infty \end{aligned} f(x,y)

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二维随机变量概率分布可以分为两种情况:连续型和离散型。 对于连续型二维随机变量,我们用联合概率密度函数𝑓(𝑥,𝑦)来描述其概率分布。该函数可以表示在二维平面上,概率落在给定区域的可能性。我们可以通过对联合概率密度函数进行积分,来计算二维随机变量落在某个区域内的概率。 而对于离散型二维随机变量,我们用联合概率质量函数𝑝(𝑥,𝑦)来描述其概率分布。该函数表示了二维随机变量取各个可能取值的概率。我们可以通过对联合概率质量函数求和,来计算二维随机变量落在某个特定取值上的概率。 此外,二维随机变量的边缘分布也很重要。边缘分布是指分别关于其中一个随机变量的概率分布。对于二维连续型随机变量,我们可以通过对联合概率密度函数进行边缘化(即对另一个变量求积分)来得到边缘分布函数。对于二维离散型随机变量,我们可以通过对联合概率质量函数进行边缘化(即对另一个变量求和)来得到边缘分布函数。 总结来说,二维随机变量的概率分布可以通过联合概率密度函数(对连续型)或联合概率质量函数(对离散型)来描述。边缘分布函数则描述了随机变量关于另一个变量的概率分布。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [《概率论与数理统计》学习笔记3-二维随机变量及其分布](https://blog.csdn.net/a2479360136/article/details/128777401)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值