【概率论基础进阶】多维随机变量及其分布-二维均匀分布和二维正态分布

本文深入探讨了二维随机变量的分布,包括二维均匀分布和二维正态分布的定义、性质及例子。通过具体计算展示了边缘密度函数和条件概率密度的求解过程,同时阐述了二维正态分布的特性,如变量的独立性和转换规则。此外,文中还提及了相关积分计算技巧和公式,是概率论学习的重要参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二维均匀分布

定义:如果二维连续型随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为
f ( x , y ) = { 1 A ( x , y ) ∈ G 0 其他 f(x,y)=\left\{\begin{aligned}& \frac{1}{A}&(x,y) \in G\\&0&其他\end{aligned}\right. f(x,y)= A10(x,y)G其他
其中 A A A是平面有界区域 G G G的面积,则称 ( X , Y ) (X,Y) (X,Y)服从区域 G G G上的均匀分布

( X , Y ) (X,Y) (X,Y) G G G上服从均匀分布, D D D G G G中的一个部分区域,记它们的面积分别为 S D S_{D} SD S G S_{G} SG,则 P { ( X , Y ) ∈ D } = S D S G \begin{aligned} P \left\{(X,Y)\in D\right\}=\frac{S_{D}}{S_{G}}\end{aligned} P{ (X,Y)D}=SGSD

例1:设二维连续型随机变量 ( X , Y ) (X,Y) (X,Y)在区域 D D D上服从均匀分布,其中
D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D=\left\{(x,y)|x^{2}+y^{2} \leq 1\right\} D={ (x,y)x2+y21}

  • X X X的边缘密度 f X ( x ) f_{X}(x) fX(x)
  • 条件概率密度 f Y ∣ X ( y ∣ x ) f_{Y|X}(y|x) fYX(yx)

区域 D D D是半径为 1 1 1的单位圆,其面积应为 π \pi π,因此 ( X , Y ) (X,Y) (X,Y)的联合密度
f ( x , y ) = { 1 π x 2 + y 2 ≤ 1 0 其他 f(x,y)=\left\{\begin{aligned}& \frac{1}{\pi}&x^{2}+y^{2}\leq 1\\&0&其他\end{aligned}\right. f(x,y)= π10x2+y21其他

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = { ∫ − 1 − x 2 1 − x 2 1 π = 2 π 1 − x 2 − 1 ≤ x ≤ 1 0 其他 f_{X}(x)=\int_{-\infty}^{+\infty}f(x,y)dy=\left\{\begin{aligned}&\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi}=\frac{2}{\pi}\sqrt{1-x^{2}}&-1\leq x \leq 1\\&0&其他\end{aligned}\right. fX(x)=+f(x,y)dy= 1x2 1x2 π1=π21x2 01x1其他

注意这里 − 1 ≤ x ≤ 1 -1\leq x \leq 1 1x1的范围是根据 x 2 + y 2 ≤ 1 x^{2}+y^{2}\leq 1 x2+y21得到的,因此必须有等号

− 1 < x < 1 -1<x<1 1<x<1
f Y ∣ X ( y ∣ x ) = { 1 2 1 − x 2 − 1 − x 2 ≤ y ≤ 1 − x 2 0 其他 f_{Y|X}(y|x)=\left\{\begin{aligned}& \frac{1}{2\sqrt{1-x^{2}}}&-\sqrt{1-x^{2}}\leq y \leq 1-x^{2}\\&0&其他\end{aligned}\right. fYX(yx)= 21x2 101x2 y1x2其他

而这里 − 1 < x < 1 -1<x<1 1<x<1,是由于条件概率的分母边缘概率,即 f X ( x ) > 0 f_{X}(x)>0 fX(x)>0,得到的,因此必须没有等号,有等号的时候可以代入边缘概率 f X ( 1 ) = f X ( − 1 ) = 0 f_{X}(1)=f_{X}(-1)=0 fX(1)=fX(1)=0

二维正态分布

定义:如果二维连续型随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ ( − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] ) − ∞ < x < + ∞ , − ∞ < y < + ∞ \begin{aligned} f(x,y)&= \frac{1}{2\pi \sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}\exp\left(- \frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right] \right)\\ &-\infty<x<+\infty,-\infty<y<+\infty \end{aligned} f(x,y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值