用计算机判断函数单调性吗,判断函数单调性的常用方法

∴x2-x1>0,x1-1<0,x2-1<0

∴f(x1)-f(x2)>0即f(x1)>f(x2)

∴函数y=在[2,3]上是减函数

使用定义法是判断函数单调性的一种常用方法,使用这一方法关键在于对函数单调性定义的理解,在应用定义法判别的时候,首先取定定义域中不等的两点,对其函数值作差,判断其大小,但是,在解题过程中,不乏对不等式的灵活应用,因此熟练掌握一些常的不等式。

二、性质法

除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解。

若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:

(1)f(x)与f(x)+C(C为常数)具有相同的单调性;例如:f(x)= x3在R上是增函数,则f(x)=x3+3在R上也是增函数;

(2) f(x)与c·f(x)当c>0具有相同的单调性,当c<0具有相反的单调性; 例如证明函数f(x)=3x-1在R上是单调增函数,∵函数f(x)=x在R上是单调增函数,∴f(x)=3x在R上也是单调增函数;∴f(x)=-2x在R上是减函数。

(3)当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;例如,证明函数F(x)=x3+x在R上是增函数。∵f(x)= x3在R上是增函数,g(x)=x在R上是增函数, ∴F(x) =f(x)+g(x)=x3+x在R上是增函数;再如:证明函数F(x)=()x+在R上是减函数。∵f(x)=()x在R上是减函数,g(x)在R上是减函数,∴F(x)=()x+在R上是减函数。

函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我们常见的简单函数的单调性结合起来使用。函数性质法只能借助于我们熟悉的单调函数去判断一些函数的单调性,因此首先把函数等价地转化成我们熟悉的单调函数的四则混合运算的形式,然后利用函数单调性的性质去判断,但有些函数不能化成简单单调函数四则混合运算形式就不能采用这种方法。

三、同增异减法

同增异减法是处理复合函数的单调性问题的常用方法。对于复合函数y=f[g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数. 例如:求函数f(x)=log2x3在(0,+∞)的单调性,令y= log2t,t=x3;∵y=log2t在(0,+∞)是增函数,t=x3在(0,+∞)也是增函数;∴f(x)=log2x3在(0,+∞)是增函数。因为两个函数都是增函数,则复合函数f(x)=log2x3在(0,+∞)上是增函数。

对于复合函数y=f[g(x)],若函数u=g(x),在区间[a,b]上是单调函数,函数y=f(u)在[g(a),g(b)]或[g(b),g(a)]上也是单调函数,那么复合函数y=f[g(x)]在区间[a,b]上是单调函数,其单调性简记为“同增异减”。判断函数的单调性,特别注意要在定义域内研究。

四、导数法

利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想。一般地,在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减。如果在某个区间内恒有f′(x)=0,则f(x)是常函数。注意:在某个区间内,f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,但(2)求可导函数f(x)单调区间的步骤:①求f′(x);②解不等式f′(x)>0(或f′(x)<0);③确认并指出递增区间(或递减区间)例如:求证: 函数f(x)=2x3-6x2+7在(0,2)内是减函数。∵f(x)=2x3-6x2+7, ∴f'(x)=6x2-12x,由f'(x)>0,解得0

### 决策单调性动态规划算法实现与优化 #### 定义与特性 决策单调性是指在某些情况下,随着状态的变化,最优决策点也呈现出某种单调变化的趋势。这种性质能够显著减少不必要的计算量,从而提高求解效率[^2]。 对于具备决策单调性的动态规划问题而言,在构建状态转移方程时会发现其拥有如下特点之一: - **四边形不等式**:当`w(a,c)+w(b,d)<=w(a,d)+w(b,c)` 对于所有的 `a<=b<c<=d` 成立,则称函数 w 满足四边形不等式; - **凸/凹单峰条件**:如果 f(x,y)=dp[x]+cost[y-x] 是关于 y 单调增加或者先减后增(即存在某个 k 使得 x<k 时递减而 x>k 时递增),那么该 DP 方案就可能存在决策单调性[^4]。 #### 实现方式 针对上述两种情况下的具体应用实例分析表明,可以通过不同的策略来利用这些特殊结构达到加速效果: ##### 方法一:分治法 通过观察到每次更新 dp[i] 的时候只需要考虑前面一段连续区间内的 j 值即可得到更优的结果;因此可以采用二分查找的方式寻找这一区间的边界位置 m ,进而将整个过程划分为两个子问题分别处理直到规模足够小时直接暴力枚举解答。 ##### 方法二:二分队列维护极值 考虑到许多实际题目中的 cost 函数往往具有良好的数学形式,比如线性关系或者其他易于操作的形式,此时就可以借助数据结构如双端队列(deque) 来高效地追踪当前范围内最小(大)代价对应的下标集合,并据此完成快速的状态迁移[^3]。 ```cpp deque<int> q; for (int i = 0; i < n; ++i){ while (!q.empty() && check(q.front(), i)) q.pop_front(); ans += calc(i, q.front()); // 维护队列中元素满足单调性 while (!q.empty() && compare(i, q.back())) q.pop_back(); q.push_back(i); } ``` #### 进一步思考 值得注意的是,并不是所有看似复杂的 DP 都适合用这种方法简化——只有那些确实表现出明显规律的问题才值得尝试引入额外的数据结构或技巧来进行改进。所以在面对新类型的挑战之前,应当仔细研究模型本身的特点再做决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值