前言
用导函数的图像判断原函数的单调性,其本质就是利用 f ′ ( x ) f'(x) f′(x)的正负,判断 f ( x ) f(x) f(x)的增减; 回顾:符号法则
典例剖析
- 给定 f ′ ( x ) f'(x) f′(x)的图像,确定 f ( x ) f(x) f(x)的单调性,最简单层次
如图是函数 y = f ( x ) y=f(x) y=f(x)的导函数 y = f ′ ( x ) y=f^{\prime}(x) y=f′(x)的图像,则下面判断正确的是【 \quad 】
分析:本题目考查对导函数的图像的解读能力,和应用图像的意识;
由于在 ( 4 , 5 ) (4,5) (4,5)上,有 f ′ ( x ) > 0 f^{\prime}(x)>0 f′(x)>0恒成立,故 f ( x ) f(x) f(x)是增函数,故选 C C C.
- 用图像确定 f ′ ( x ) f'(x) f′(x)的正负,确定 f ( x ) f(x) f(x)的单调性,
【2017聊城模拟】已知函数 y = x f ′ ( x ) y=xf'(x) y=xf′(x)的图像如图所示(其中 f ′ ( x ) f'(x) f′(x)是函数 f ( x ) f(x) f(x)的导函数),则下面四个图像中, y = f ( x ) y=f(x) y=f(x)的图像大致是【】
分析:由图可知,
当 x < − 1 x<-1 x<−1时, y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f′(x)>0;
当 − 1 < x < 0 -1<x<0 −1<x<0时, y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f′(x)<0;
当 0 < x < 1 0<x<1 0<x<1时, y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f′(x)<0;
当 x > 1 x>1 x>1时, y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f′(x)>0;
从而可知当 x < − 1 x<-1 x<−1时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0, f ( x ) ↗ f(x)\nearrow f(x)↗;
当 − 1 < x < 1 -1<x<1 −1<x<1时, f ′ ( x ) < 0 f'(x)<0 f′(x)<0, f ( x ) ↘ f(x)\searrow f(x)↘;
当 x > 1 x>1 x>1时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0, f ( x ) ↗ f(x)\nearrow f(x)↗;故选C。
【2017
⋅
\cdot
⋅滨州模拟】设R上的可导函数
f
(
x
)
f(x)
f(x)的导函数为
f
′
(
x
)
f'(x)
f′(x),且函数
y
=
(
1
−
x
)
f
′
(
x
)
y=(1-x)f'(x)
y=(1−x)f′(x)的图像如图所示,则下列结论一定成立的是【】
分析:当 x < − 2 x<-2 x<−2时,则有 1 − x > 0 1-x>0 1−x>0,又 y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f′(x)>0;
当 − 2 < x < 1 -2<x<1 −2<x<1时,则有 1 − x > 0 1-x>0 1−x>0,又 y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f′(x)<0;
当 1 < x < 2 1<x<2 1<x<2时,则有 1 − x < 0 1-x<0 1−x<0,又 y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f′(x)<0;
当 x > 2 x>2 x>2时,则有 1 − x < 0 1-x<0 1−x<0,又 y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f′(x)>0;
从而可知当 x < − 2 x<-2 x<−2时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0, f ( x ) ↗ f(x)\nearrow f(x)↗;
当 − 2 < x < 2 -2<x<2 −2<x<2时, f ′ ( x ) < 0 f'(x)<0 f′(x)<0, f ( x ) ↘ f(x)\searrow f(x)↘;
当 x > 2 x>2 x>2时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0, f ( x ) ↗ f(x)\nearrow f(x)↗;故选 D D D。
*解不等式确定 f ′ ( x ) f^{\prime}(x) f′(x)的正负,确定 f ( x ) f(x) f(x)的单调性,
【2017•合肥模拟】定义在 R R R上的可导函数 f ( x ) f(x) f(x)的导函数为 f ′ ( x ) f^{\prime}(x) f′(x),已知函数 y = 2 f ′ ( x ) y=2^{f^{\prime}(x)} y=2f′(x)的图像如图所示,则函数 y = f ( x ) y=f(x) y=f(x)的单调递减区间为【 】

分析:结合图像可知,
当 x ∈ ( − ∞ , 2 ] x\in(-\infty,2] x∈(−∞,2]时, 2 f ′ ( x ) ≥ 1 2^{f^{\prime}(x)}≥1 2f′(x)≥1, 即 f ′ ( x ) ≥ 0 f^{\prime}(x)≥0 f′(x)≥0;当 x ∈ ( 2 , + ∞ ) x\in (2,+\infty) x∈(2,+∞)时, 2 f ′ ( x ) < 1 2^{f^{\prime}(x)}<1 2f′(x)<1, 即 f ′ ( x ) < 0 f^{\prime}(x)<0 f′(x)<0;
故函数 y = f ( x ) y=f(x) y=f(x)的递减区间为 ( 2 , + ∞ ) (2,+\infty) (2,+∞)。故选 D D D。
(用不等式确定 f ′ ( x ) f^{\prime}(x) f′(x)的正负,确定 f ( x ) f(x) f(x)的单调性)(2017•合肥模拟)
1、给定函数 y = ( x 2 − 3 x + 2 ) ⋅ f ′ ( x ) y=(x^2-3x+2)\cdot f'(x) y=(x2−3x+2)⋅f′(x)的图像,先推断 f ′ ( x ) f'(x) f′(x)的正负,再确定 f ( x ) f(x) f(x)的单调性;
2、已知 ( x 2 − 3 x + 2 ) ⋅ f ′ ( x ) > 0 (x^2-3x+2)\cdot f'(x)>0 (x2−3x+2)⋅f′(x)>0,判断 f ( x ) f(x) f(x)的单调性;
已知函数 y = f ( x ) y=f(x) y=f(x) 的图像是下列四个图像之一,且其导函数 y = f ′ ( x ) y=f^{\prime}(x) y=f′(x) 的图像如图所示,则该函数的图像是【 \quad 】
分析:由 y = f ′ ( x ) y=f^{\prime}(x) y=f′(x) 的图像是先上升后下降可知,函数 y = f ( x ) y=f(x) y=f(x)图像的切线的斜率先增大后减小,故选 B B B.
函数 y = f ( x ) y=f(x) y=f(x) 的图象如图所示,则 y = f ′ ( x ) y=f^{\prime}(x) y=f′(x) 的图象可能是【 \quad 】
分析:由函数 f ( x ) f(x) f(x) 的图象可知, f ( x ) f(x) f(x) 在 ( − ∞ , 0 ) (-\infty, 0) (−∞,0)上单调递增, f ( x ) f(x) f(x) 在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上单调递减,
所以在区间 ( − ∞ , 0 ) (-\infty, 0) (−∞,0)上 f ′ ( x ) > 0 f'(x)>0 f′(x)>0, 在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上 f ′ ( x ) < 0 f'(x)<0 f′(x)<0,只有选项 D D D满足;故选 D D D.
【2019深圳中学阶段性测试】函数 f ( x ) = x − 2 sin x , f(x)=x-2\sin x, f(x)=x−2sinx, 对任意的 x 1 x_{1} x1, x 2 ∈ [ 0 , π ] x_{2}\in[0,\pi] x2∈[0,π],恒有 ∣ f ( x 1 ) |f(x_{1}) ∣f(x1) − - − f ( x 2 ) f(x_{2}) f(x2) ∣ | ∣ ⩽ \leqslant ⩽ M M M,则 M M M的最小值为_____________。
解析: 因为 f ( x ) = x − 2 sin x , f(x)=x-2\sin x, f(x)=x−2sinx, 所以 f ′ ( x ) = 1 − 2 cos x f^{\prime}(x)=1-2\cos x f′(x)=1−2cosx
所以当 0 < x < π 3 0<x<\frac{\pi}{3} 0<x<3π时, f ′ ( x ) < 0 f'(x)<0 f′(x)<0, f ( x ) f(x) f(x)单调递减;当 π 3 < x < π \cfrac{\pi}{3}<x<\pi 3π<x<π时, f ′ ( x ) > 0 f^{\prime}(x)>0 f′(x)>0, f ( x ) f(x) f(x)单调道增;
所以当 x = π 3 x=\cfrac{\pi}{3} x=3π时, f ( x ) f(x) f(x)有极小值,即最小值,
且 f ( x ) min = f ( π 3 ) = π 3 − 2 sin π 3 = π 3 − 3 f(x)_{\min }=f(\cfrac{\pi}{3})=\cfrac{\pi}{3}-2\sin\cfrac{\pi}{3}=\cfrac{\pi}{3}-\sqrt{3} f(x)min=f(3π)=3π−2sin3π=3π−3
又 f ( 0 ) = 0 f(0)=0 f(0)=0, f ( π ) = π f(\pi)=\pi f(π)=π,所以 f ( x ) max = π f(x)_{\max }=\pi f(x)max=π,
由题意得 ∣ f ( x 1 ) − f ( x 2 ) ∣ ⩽ M |f(x_{1})-f(x_{2})|\leqslant M ∣f(x1)−f(x2)∣⩽M等价于
M ⩾ ∣ f ( x ) max − f ( x ) min ∣ = π − ( π 3 − 3 ) = 2 π 3 + 3 M\geqslant|f(x)_{\max}-f(x)_{\min}|=\pi-(\cfrac{\pi}{3}-\sqrt{3})=\cfrac{2\pi}{3}+\sqrt{3} M⩾∣f(x)max−f(x)min∣=π−(3π−3)=32π+3,
所以 M M M 的最小值为 2 π 3 + 3 \cfrac{2\pi}{3}+\sqrt{3} 32π+3, 故填写 2 π 3 + 3 \cfrac{2\pi}{3}+\sqrt{3} 32π+3。