用导函数的图像判断原函数的单调性

前言

用导函数的图像判断原函数的单调性,其本质就是利用 f ′ ( x ) f'(x) f(x)的正负,判断 f ( x ) f(x) f(x)的增减; 回顾:符号法则

典例剖析

  • 给定 f ′ ( x ) f'(x) f(x)的图像,确定 f ( x ) f(x) f(x)的单调性,最简单层次

如图是函数 y = f ( x ) y=f(x) y=f(x)的导函数 y = f ′ ( x ) y=f^{\prime}(x) y=f(x)的图像,则下面判断正确的是【 \quad

$A.$在区间$(一2,1)$上$f(x)$是增函数;
$B.$在区间$(1,3)$上$f(x)$是减函数;
$C.$在区间$(4,5)$上$f(x)$是增函数;
$D.$当$x=2$时,$f(x)$取到极小值

分析:本题目考查对导函数的图像的解读能力,和应用图像的意识;

由于在 ( 4 , 5 ) (4,5) (4,5)上,有 f ′ ( x ) > 0 f^{\prime}(x)>0 f(x)>0恒成立,故 f ( x ) f(x) f(x)是增函数,故选 C C C.

  • 用图像确定 f ′ ( x ) f'(x) f(x)的正负,确定 f ( x ) f(x) f(x)的单调性,

【2017聊城模拟】已知函数 y = x f ′ ( x ) y=xf'(x) y=xf(x)的图像如图所示(其中 f ′ ( x ) f'(x) f(x)是函数 f ( x ) f(x) f(x)的导函数),则下面四个图像中, y = f ( x ) y=f(x) y=f(x)的图像大致是【】

分析:由图可知,
在这里插入图片描述

x < − 1 x<-1 x<1时, y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f(x)>0

− 1 < x < 0 -1<x<0 1<x<0时, y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f(x)<0

0 < x < 1 0<x<1 0<x<1时, y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f(x)<0

x > 1 x>1 x>1时, y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f(x)>0

从而可知当 x < − 1 x<-1 x<1时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ( x ) ↗ f(x)\nearrow f(x)

− 1 < x < 1 -1<x<1 1<x<1时, f ′ ( x ) < 0 f'(x)<0 f(x)<0 f ( x ) ↘ f(x)\searrow f(x)

x > 1 x>1 x>1时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ( x ) ↗ f(x)\nearrow f(x);故选C。

【2017 ⋅ \cdot 滨州模拟】设R上的可导函数 f ( x ) f(x) f(x)的导函数为 f ′ ( x ) f'(x) f(x),且函数 y = ( 1 − x ) f ′ ( x ) y=(1-x)f'(x) y=(1x)f(x)的图像如图所示,则下列结论一定成立的是【】
在这里插入图片描述

$A.$函数$f(x)$有极大值$f(2)$和极小值$f(1)$
$B.$函数$f(x)$有极大值$f(-2)$和极小值$f(1)$
$C.$函数$f(x)$有极大值$f(2)$和极小值$f(-2)$
$D.$函数$f(x)$有极大值$f(-2)$和极小值$f(2)$

分析:当 x < − 2 x<-2 x<2时,则有 1 − x > 0 1-x>0 1x>0,又 y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f(x)>0

− 2 < x < 1 -2<x<1 2<x<1时,则有 1 − x > 0 1-x>0 1x>0,又 y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f(x)<0

1 < x < 2 1<x<2 1<x<2时,则有 1 − x < 0 1-x<0 1x<0,又 y > 0 y>0 y>0,故由符号法则可知 f ′ ( x ) < 0 f'(x)<0 f(x)<0

x > 2 x>2 x>2时,则有 1 − x < 0 1-x<0 1x<0,又 y < 0 y<0 y<0,故由符号法则可知 f ′ ( x ) > 0 f'(x)>0 f(x)>0

从而可知当 x < − 2 x<-2 x<2时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ( x ) ↗ f(x)\nearrow f(x)

− 2 < x < 2 -2<x<2 2<x<2时, f ′ ( x ) < 0 f'(x)<0 f(x)<0 f ( x ) ↘ f(x)\searrow f(x)

x > 2 x>2 x>2时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ( x ) ↗ f(x)\nearrow f(x);故选 D D D

*解不等式确定 f ′ ( x ) f^{\prime}(x) f(x)的正负,确定 f ( x ) f(x) f(x)的单调性,

【2017•合肥模拟】定义在 R R R上的可导函数 f ( x ) f(x) f(x)的导函数为 f ′ ( x ) f^{\prime}(x) f(x),已知函数 y = 2 f ′ ( x ) y=2^{f^{\prime}(x)} y=2f(x)的图像如图所示,则函数 y = f ( x ) y=f(x) y=f(x)的单调递减区间为【 】

$A.(1,+\infty)$ $B.(1,2)$ $C.(-\infty,2)$ $D.(2,+\infty)$

分析:结合图像可知,

x ∈ ( − ∞ , 2 ] x\in(-\infty,2] x(2]时, 2 f ′ ( x ) ≥ 1 2^{f^{\prime}(x)}≥1 2f(x)1, 即 f ′ ( x ) ≥ 0 f^{\prime}(x)≥0 f(x)0;当 x ∈ ( 2 , + ∞ ) x\in (2,+\infty) x(2,+)时, 2 f ′ ( x ) < 1 2^{f^{\prime}(x)}<1 2f(x)<1, 即 f ′ ( x ) < 0 f^{\prime}(x)<0 f(x)<0

故函数 y = f ( x ) y=f(x) y=f(x)的递减区间为 ( 2 , + ∞ ) (2,+\infty) (2,+)。故选 D D D

(用不等式确定 f ′ ( x ) f^{\prime}(x) f(x)的正负,确定 f ( x ) f(x) f(x)的单调性)(2017•合肥模拟)

1、给定函数 y = ( x 2 − 3 x + 2 ) ⋅ f ′ ( x ) y=(x^2-3x+2)\cdot f'(x) y=(x23x+2)f(x)的图像,先推断 f ′ ( x ) f'(x) f(x)的正负,再确定 f ( x ) f(x) f(x)的单调性;

2、已知 ( x 2 − 3 x + 2 ) ⋅ f ′ ( x ) > 0 (x^2-3x+2)\cdot f'(x)>0 (x23x+2)f(x)>0,判断 f ( x ) f(x) f(x)的单调性;

已知函数 y = f ( x ) y=f(x) y=f(x) 的图像是下列四个图像之一,且其导函数 y = f ′ ( x ) y=f^{\prime}(x) y=f(x) 的图像如图所示,则该函数的图像是【 \quad

分析:由 y = f ′ ( x ) y=f^{\prime}(x) y=f(x) 的图像是先上升后下降可知,函数 y = f ( x ) y=f(x) y=f(x)图像的切线的斜率先增大后减小,故选 B B B.

函数 y = f ( x ) y=f(x) y=f(x) 的图象如图所示,则 y = f ′ ( x ) y=f^{\prime}(x) y=f(x) 的图象可能是【 \quad

分析:由函数 f ( x ) f(x) f(x) 的图象可知, f ( x ) f(x) f(x) ( − ∞ , 0 ) (-\infty, 0) (,0)上单调递增, f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上单调递减,

所以在区间 ( − ∞ , 0 ) (-\infty, 0) (,0) f ′ ( x ) > 0 f'(x)>0 f(x)>0, 在 ( 0 , + ∞ ) (0,+\infty) (0,+) f ′ ( x ) < 0 f'(x)<0 f(x)<0,只有选项 D D D满足;故选 D D D.

【2019深圳中学阶段性测试】函数 f ( x ) = x − 2 sin ⁡ x , f(x)=x-2\sin x, f(x)=x2sinx, 对任意的 x 1 x_{1} x1 x 2 ∈ [ 0 , π ] x_{2}\in[0,\pi] x2[0π],恒有 ∣ f ( x 1 ) |f(x_{1}) f(x1) − - f ( x 2 ) f(x_{2}) f(x2) ∣ | ⩽ \leqslant M M M,则 M M M的最小值为_____________。

解析: 因为 f ( x ) = x − 2 sin ⁡ x , f(x)=x-2\sin x, f(x)=x2sinx, 所以 f ′ ( x ) = 1 − 2 cos ⁡ x f^{\prime}(x)=1-2\cos x f(x)=12cosx

所以当 0 < x < π 3 0<x<\frac{\pi}{3} 0<x<3π时, f ′ ( x ) < 0 f'(x)<0 f(x)<0 f ( x ) f(x) f(x)单调递减;当 π 3 < x < π \cfrac{\pi}{3}<x<\pi 3π<x<π时, f ′ ( x ) > 0 f^{\prime}(x)>0 f(x)>0 f ( x ) f(x) f(x)单调道增;

所以当 x = π 3 x=\cfrac{\pi}{3} x=3π时, f ( x ) f(x) f(x)有极小值,即最小值,

f ( x ) min ⁡ = f ( π 3 ) = π 3 − 2 sin ⁡ π 3 = π 3 − 3 f(x)_{\min }=f(\cfrac{\pi}{3})=\cfrac{\pi}{3}-2\sin\cfrac{\pi}{3}=\cfrac{\pi}{3}-\sqrt{3} f(x)min=f(3π)=3π2sin3π=3π3

f ( 0 ) = 0 f(0)=0 f(0)=0 f ( π ) = π f(\pi)=\pi f(π)=π,所以 f ( x ) max ⁡ = π f(x)_{\max }=\pi f(x)max=π

由题意得 ∣ f ( x 1 ) − f ( x 2 ) ∣ ⩽ M |f(x_{1})-f(x_{2})|\leqslant M f(x1)f(x2)M等价于

M ⩾ ∣ f ( x ) max ⁡ − f ( x ) min ⁡ ∣ = π − ( π 3 − 3 ) = 2 π 3 + 3 M\geqslant|f(x)_{\max}-f(x)_{\min}|=\pi-(\cfrac{\pi}{3}-\sqrt{3})=\cfrac{2\pi}{3}+\sqrt{3} Mf(x)maxf(x)min=π(3π3 )=32π+3

所以 M M M 的最小值为 2 π 3 + 3 \cfrac{2\pi}{3}+\sqrt{3} 32π+3 , 故填写 2 π 3 + 3 \cfrac{2\pi}{3}+\sqrt{3} 32π+3

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值