多维多重背包问题_背包问题总结( 1 ) 01 背包,完全背包,多重背包,分组背包...

这篇文章将背包问题和动规做一个整理复习。

背包问题的本质上是一个选择问题,即通过选择来得到最大价值或各种各样的性质。

动态规划基础知识

DP 问题我们一般的思路是先确定解法的基本形式,再在它的基础上做优化。

首先我们对DP问题的分析流程做一下定义, 对于DP问题我们要确定的要素主要为

(1) 状态表示 :dp 元素表示的是哪个集合

(以01背包问题为例: (i, j) 代表了只考虑在 1~i 范围内选择物品,并且体积小于等于 j 的所有状态的集合)

存的数是表示集合的哪一个属性(目标)

(以01背包问题为例:dp(i, j) 代表了(i, j)代表的所有状态集合中最大价值)

动态规划一般包含(MIN, MAX, COUNT)三种目标。

(2) 状态计算(状态转移方程):对应的是集合的划分,如何将当前的集合dp( i,j )划分成几个更小的子集。

(1) 01背包问题

(1.1) Solution 1 : 二维动态规划

了解了这些以后我们就可以基于这个思路对01背包问题做一些分析:

(1) 当

时:

(2) 当

时:

#include <iostream>
#include <vector>
#define N 1100
using namespace std;


int main(void){
    
    int n, m;
    int v[N], w[N]; 
    int dp[N][N];
    cin >> n >> m;
    for(int i = 1; i <= n; i++)  cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
    
        for(int j = 0; j <= m; j++){
    
            if(j-v[i] >= 0)      dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i]);
            else                 dp[i][j] = dp[i-1][j];
        }
    }
    cout << dp[n][m];
    return 0;
}

(1.2) Solution 2: 状态压缩 : 一维动态规划

dp问题的所有优化都是在代码上做等价变形 , 和问题本身无关,只和代码逻辑有关。 01背包在时间复杂度上没法再优化, 从空间上我们其实还能做一些优化。

  1. 首先其实可以发现整个转移方程中对于 i 这一维,只用到了i -1, 所以我们其实并不需要记录所有的dp[i][..],相反只需要用单个变量记录即可(滚动数组)。这样我们可以得出
  2. 在去除dp 数组的 i 这一维后,我们碰到了一些问题:对于 j 这一维因为 j - v[i] < j , 所以实际上 dp[j-v[i]] 这个状态已经被计算过了,这代表了什么呢,每次循环开始时 dp[j] 记录的是dp[i-1][j]的信息,而循环结束更新后 dp[j] 记录的则为
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值