背包问题
有 n 个物品和容量为 V 的背包,第 i 件物品的体积为 c[i],价值为 w[i]。现在的目标是确定要将哪些物体放入背包,以保证在体积 不超过背包容量 的前提下,背包内的 总价值最高?
1. 01背包问题
约束条件: 每种物品数量为 1,可以选择放或不放
状态定义: f[i][v]
为前 i 个 物品中,体积恰好为 v 时的最大价值。
result = max(f[n][0~V])
即最终答案,它表示前 n 个物品的最大价值,假设这时容量为 k ,由于 0 <= k <= V,因此容量要在 0~V求最大值来寻找 k。
状态转移方程:
f[i][v] = max(f[i-1][v], f[i-1][v-c[i]] + w[i])
以上得到的状态 i 和状态 i-1 关系是从 实际意义 推断出来的。
- 如果 不选第 i 个物品,那么前 i 个背包的最大价值就是前 i-1 个物品的价值,即
f[i][v] = f[i-1][v]
; - 如果 选择了第 i 个物品,前 i-1 个物品的体积就是 v-c[i],状态方程为
f[i-1][v-c[i]]
,注意这时的价值是前 i-1 个物品的价值,因此少了w[i]
的价值,所以f[i][v] = f[i-1][v-c[i]] + w[i]
。
2. 完全背包问题
约束条件: 每种物品的数量为无限个,你可以选择任意数量的物品
f[i][v] = max(f[i-1][v-k*c[i]] + k*w[i]), 0 <=k*c[i]<=v
同样地,以上得到的状态 i 和状态 i-1 关系是从 实际意义 推断出来的。
如果 第 i 个物品选择了 k 次,前 i-1 种物品的体积就是 v-k*c[i]
,状态方程为 f[i-1][v-k*c[i]]
,注意这时的价值是前 i-1 种物品的价值,因此少了 k*w[i]
的价值,所以 f[i][v] = max(f[i-1][v-k*c[i]] + k*w[i])
, 0 <=k*c[i]<=v
这个方程可以简化为如下写法
dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i])
//这是因为:
//dp[i][j] = dp[i - 1][j] + dp[i-1][j - coins[i]) + ... + dp[i-1][j - k*coins[i]);
//dp[i][j - coins[i] = dp[i-1][j - coins[i]) + ... + dp[i-1][j - k*coins[i]),
//所以 dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i])