ctr 平滑_CTR预估中的贝叶斯平滑方法(二)参数估计和代码实现

这篇博客详细介绍了贝叶斯平滑方法在CTR(点击率)预估中的参数估计,包括矩估计、Fixed-point iteration和EM算法。通过实例展示了如何用Python代码实现这些方法,并提供了相关参考文献。
摘要由CSDN通过智能技术生成

1. 前言

这篇博客主要是介绍如何对贝叶斯平滑的参数进行估计,以及具体的代码实现。

首先,我们回顾一下前文中介绍的似然函数,也就是我们需要进行最大化的目标函数:

下面我们就基于这个目标函数介绍怎样估计参数。

2. 参数估计的几种方法

1. 矩估计

矩估计在这里有点乱入的意思:),因为它其实不是用来最大化似然函数的,而是直接进行参数的近似估计。

矩估计的方法要追溯到19世纪的Karl Pearson,是基于一种简单的 “替换” 思想建立起来的一种估计方法。 其基本思想是用样本矩估计总体矩. 由大数定理,如果未知参数和总体的某个(些)矩有关系,我们可以很自然地来构造未知参数的估计。具体计算步骤如下:

1)根据给出的概率密度函数,计算总体的原点矩(如果只有一个参数只要计算一阶原点矩,如果有两个参数要计算一阶和二阶)。由于有参数这里得到的都是带有参数的式子。比如,有两个参数时,需要先计算出:期望

  ; 方差  

。在Beta分布中,可以计算得到,E(x) = α / (α+β),D(x) = αβ / (α+β)2(α+β+1)。

2)根据给出的样本,按照计算样本的原点矩。通常它的均值mean用

 表示,方差var用  

表示。(另外提一句,求

时,通常用n-1为底。这样是想让结果跟接近总体的方差,又称为无偏估计)

3)让总体的原点矩与样本的原点矩相等,解出参数。所得结果即为参数的矩估计值。这里有,mean = E(x) = α / (α+β),var = D(x) = αβ / (α+β)2(α+β+1)。于是乎,我们可以求得α,β:

α = [mean*(1-me

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值