dsge模型参数估计 matlab,DSGE求解和模型参数估计的一些认识

DSGE求解和模型参数估计的一些认识

其实DSGE最难的地方不在于模型的optimality condition的推导,也不在于寻找Saddle-path。最难的还是在于参数估计,最大似然或者是贝叶斯估计。我下面一条一条地写出来一些认识,希望和大家交流。DSGE是宏观经济学的顶峰难度,不适合数学和经济学基础没有打好的同学,更加不适合自学。这个行业里面一直以来都是老师带学生的传统,基本没有自学成才的例子,至少我没听说过。所以要提醒大家,有导师的,要依靠导师,没有导师的要多跟别人交流学习。

1 . 动态规划是现代宏观的一部分数学基础,但是不是你们想象中那么重要。不要以为学高级宏观就是一直在弄Dynamic programming,这个技术虽然不简单,但也怎么也算不上现代宏观或者DSGE的核心技术。完全没有必要画大把的时间在这个上面,DSGE不依靠它而存在。就目前的DSGE研究来看,用dynamic programming的地方就是对Euler equation分析求解用得比较多,其他地方基本都不用。更别说Dynamic programming的数值模拟了,除了上课的时候用,真实研究里面基本不用。

2 . DSGE不是非要线性化才能搞,关键看你的目的是什么,如果你就是做模拟和impulse response,你没有必要自己动手去对数线性化,Dynare可以帮你做。但是要知道一点,我们对付“线性动力系统”的知识远远比“非线性动力系统”认识要深和宽泛。非线性动力系统对付起来很麻烦,占用大量的计算时间,并且准确性低,对初始条件非常敏感。非线性微分方程组里面一个重要话题就是混沌理论,用在气象学上面的一个著名例子就是“蝴蝶效应”。如果你学过研究生级别的微分方程课程,就应该知道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值