python经典应用库_哪些 Python 库让你相见恨晚?

Copent包提供了一种非参数的Copula熵估计方法,用于解决机器学习和统计学中的相关性问题。相较于Pearson相关系数,Copula熵不依赖于线性和高斯假设,更适合多变量相关性度量。该方法在特征选择、因果关系发现等领域表现出优越性能,例如在变量选择中优于LASSO等经典方法,在时序因果发现中通过传递熵揭示了气象因素与PM2.5之间的因果联系。相关论文和Python代码可在给出的链接中找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐一下copent包。

该包实现了一种非参数的Copula熵(Copula Entropy)估计方法,可解决多个机器学习和统计学基础性问题,应该会让你相见恨晚了。

此包在PyPI上的网址是:copent​pypi.orgd2201d0c197ed2a3f5363ec711b74f59.png

相关性分析

Pearson相关系数是一种统计学史上重要的相关性度量概念,虽然应用广泛,但却具有线性和高斯性等局限性。 Copula熵则是一种更高级的相关性度量,它没有线性和高斯性的假设,是一个多变量的相关性度量。如下论文将二者进行了对比,并利用著名的NHANES医学体检数据证实了copula熵的显著优越性。

Ma, Jian. “Discovering Association with Copula Entropy.” arXiv preprint arXiv:1907.12268 (2019).Discovering Association with Copula Entropy​arxiv.org

特征(变量)选择

特征选择推荐使用Copula熵方法,研究表明其优于目前所有主流方法。以下论文将此方法与如下经典变量选择方法在UCI heart disease data上进行了对比LASSO

Adaptive LASSO

Ridge Regression

Elastic Net

AIC

BIC

Distance Correlation

Hilbert-Schmidt Independence Criterion (HSIC)

证明了copula熵方法在预测能力和可解释性能两方面的优越性。

Ma, Jian. “Variable Selection with Copula Entropy.” Chinese Journal of Applied Probability and Statistics (accepted). See also arXiv preprint arXiv:1910.12389 (2019).Variable Selection with Copula Entropy​arxiv.org

时序因果发现

传递熵是度量时序之间因果关系的概念,它可被认为是格兰杰因果检验的非线性版本。以下论文基于copula熵估计给出了传递熵估计的非参数方法,并利用这个方法研究了气象因素和PM2.5之间的因果关系。

Ma, Jian. “Estimating Transfer Entropy via Copula Entropy.” arXiv preprint arXiv:1910.04375 (2019).Estimating Transfer Entropy via Copula Entropy​arxiv.org

论文的Python代码见:https://github.com/majianthu/transferentropy​github.com

### Copula Entropy 的概念与计算 Copula Entropy 是一种用于衡量随机变量之间依赖关系的方法。它结合了 Copula 和信息论中的熵的概念,能够有效捕捉变量间的复杂非线性依赖结构。 #### 什么是 Copula? Copula 是一种统计工具,用来描述多个随机变量之间的联合分布与其边缘分布的关系[^3]。通过 Sklar 定理可知,任意多维联合分布函数可以分解为其边缘分布和一个连接这些边缘分布的 Copula 函数。 #### 什么是熵 (Entropy)? 熵是一种来自信息论的概念,表示系统的不确定性或混乱程度。对于连续型随机变量 \(X\),其微分熵定义为: \[ H(X) = -\int_{-\infty}^\infty f(x)\log(f(x))dx \] #### Copula Entropy 的定义 Copula Entropy 表示由 Copula 描述的随机变量间相互作用所引起的额外信息量。具体来说,给定两个随机变量 \(X, Y\) 及其对应的 Copula 密度函数 \(c(u,v)\),则 Copula Entropy 被定义为: \[ CE(C) = -\iint c(u,v)\log(c(u,v))du dv \] 这实际上是对 Copula 密度函数应用的信息熵公式。 #### 如何计算 Copula Entropy? 以下是具体的计算流程: 1. **估计经验 Copula** 基于观测数据集 \((x_1,y_1),...,(x_n,y_n)\),可以通过秩变换获得经验 Copula 数据点 \(\{(u_i,v_i): u_i=\frac{rank(x_i)}{n}, v_i=\frac{rank(y_i)}{n}\}\)。 2. **拟合 Copula 模型** 使用参数化或者非参数化的 Copula 模型去近似真实的 Copula 结构。常见的 Copula 类型有 Gaussian Copula、t-Copula、Clayton Copula 等。 3. **求解密度函数并积分** 利用上述拟合好的 Copula 模型获取其密度函数形式 \(c(u,v)\),代入 Copula Entropy 公式完成数值积分运算。 ```python import numpy as np from scipy.stats import rankdata, gaussian_kde def copula_entropy(data_x, data_y): n = len(data_x) # Step 1: Rank Transformation to get empirical CDF values U = rankdata(data_x)/n V = rankdata(data_y)/n # Combine into a single dataset of pairs UV = np.vstack([U,V]).T # Step 2: Estimate the density using KDE or other methods kde = gaussian_kde(UV.T) # Evaluate at each point and compute log likelihoods densities = kde.evaluate(UV.T).diagonal() entropies = -densities * np.log(densities) return sum(entropies) / n # Example Usage if __name__ == "__main__": X = np.random.normal(size=1000) Y = 2*X + np.random.normal(scale=0.5,size=1000) ce_value = copula_entropy(X,Y) print("Estimated Copula Entropy:", ce_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值