python经典应用库_哪些 Python 库让你相见恨晚?

Copent包提供了一种非参数的Copula熵估计方法,用于解决机器学习和统计学中的相关性问题。相较于Pearson相关系数,Copula熵不依赖于线性和高斯假设,更适合多变量相关性度量。该方法在特征选择、因果关系发现等领域表现出优越性能,例如在变量选择中优于LASSO等经典方法,在时序因果发现中通过传递熵揭示了气象因素与PM2.5之间的因果联系。相关论文和Python代码可在给出的链接中找到。
摘要由CSDN通过智能技术生成

推荐一下copent包。

该包实现了一种非参数的Copula熵(Copula Entropy)估计方法,可解决多个机器学习和统计学基础性问题,应该会让你相见恨晚了。

此包在PyPI上的网址是:copent​pypi.orgd2201d0c197ed2a3f5363ec711b74f59.png

相关性分析

Pearson相关系数是一种统计学史上重要的相关性度量概念,虽然应用广泛,但却具有线性和高斯性等局限性。 Copula熵则是一种更高级的相关性度量,它没有线性和高斯性的假设,是一个多变量的相关性度量。如下论文将二者进行了对比,并利用著名的NHANES医学体检数据证实了copula熵的显著优越性。

Ma, Jian. “Discovering Association with Copula Entropy.” arXiv preprint arXiv:1907.12268 (2019).Discovering Association with Copula Entropy​arxiv.org

特征(变量)选择

特征选择推荐使用Copula熵方法,研究表明其优于目前所有主流方法。以下论文将此方法与如下经典变量选择方法在UCI heart disease data上进行了对比LASSO

Adaptive LASSO

Ridge Regression

Elastic Net

AIC

BIC

Distance Correlation

Hilbert-Schmidt Independence Criterion (HSIC)

证明了copula熵方法在预测能力和可解释性能两方面的优越性。

Ma, Jian. “Variable Selection with Copula Entropy.” Chinese Journal of Applied Probability and Statistics (accepted). See also arXiv preprint arXiv:1910.12389 (2019).Variable Selection with Copula Entropy​arxiv.org

时序因果发现

传递熵是度量时序之间因果关系的概念,它可被认为是格兰杰因果检验的非线性版本。以下论文基于copula熵估计给出了传递熵估计的非参数方法,并利用这个方法研究了气象因素和PM2.5之间的因果关系。

Ma, Jian. “Estimating Transfer Entropy via Copula Entropy.” arXiv preprint arXiv:1910.04375 (2019).Estimating Transfer Entropy via Copula Entropy​arxiv.org

论文的Python代码见:https://github.com/majianthu/transferentropy​github.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值