- 博客(6)
- 收藏
- 关注
原创 Shap解释LSTM时序预测模型(全套代码分享)
用LSTM模型对从网上下载的数据进行预测,用12个时间步预测下个时间步的单个值,每个时间步有7个特征,所以是多步预测单步的模型,最后用shap库的DeepExplainer解释器(适用于深度学习模型,基于模型的梯度计算shap值)解释模型,并绘制自变量重要性汇总图、单变量依赖图等8类图片。自变量重要性汇总图、各个分类下自变量重要性柱状图、各个分类下单个变量的依赖图、各个分类下单个变量的力图、各个分类下单个样本的决策图、多个样本的决策图、热图、单个样本的解释图等。
2025-01-05 21:13:21
2491
2
原创 Shap解释Transformer回归模型(全套代码分享)
使用shap库中kernel解释器解释Transformer模型,kernel可以解释任意机器学习模型,缺点是精确度差一点,以及计算速度慢,由于测试集数据量较大(包括7665个样本),为了提高计算速度,首先对测试集进行聚类,参数k是聚类后的样本数量,k越大,shap值计算速度越慢,但是相应的画出的图会更好看,请各位根据自己的电脑情况进行取舍,这里取40。如果电脑性能不足,但是又想要大样本的shap值,k值可以取大一点,但是计算shap值的时候分块计算,如每次计算40个,计算完成后在将结果合并。
2024-12-24 21:09:19
1287
原创 【Shap解释Transformer模型】基于pytorch建立transformer模型,对nhanes数据库的下载数据进行二分类,最后用shap解释模型
Shap解释Transformer模型
2024-10-17 17:20:41
1870
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人