取绝对值函数图像怎么画_函数图像的几何变换

一.1.考查函数图像是近年来高考的一个热点。题型有二:一是给函数解析式,指出函数图像,多以选择题的形式出现;二是由函数,画出函数图像或者示意图,利用形数结合法解题,其中常用到几种常见函数的图像变化。

2. 高中常见的函数几何图象变换有4种:平移、对称、局部翻折、伸缩变换等。平常做题时,尽量根据函数性质和几何变换,画出函数图像,以便数形结合、直观明了。

ca329c5546be2d0b806d63336d898372.png

二.4种函数图像变换

(一)平移变换

1.上下平移,上加下减

y=f(x)————y=f(x)+b

b为正时,上移b个单位;b为负时,下移b的绝对值个单位。

2. 左右平移,左加右减

y=f(x)—————y=f(x+a)

a大于0时左移;a小于0时,右移a的绝对值个单位。

f92237a800520d68324818e8cb2f8abd.png

(二)对称变换

1. 关于x轴对称,由点(x,y)和点(x,-y)关于x轴对称得到。

y=f(x)——————y=-f(x)

2. 关于y轴对称。由点(x,y)和点(-x,y)关于y轴对称,而得到下列函数图像关于y轴对称。

y=f(x)——————y=f(-x)

3. 关于原点对称

由点(x,y)和点(-x,-y)关于坐标原点对称而得到。

y=f(x)———————y=-f(-x)

4. 关于直线y=x对称

点(x,y)和点(y,x)关于直线y=x对称,得到原函数和反函数的图像也关于上述直线对称。

1ce6fb9dd0f10f5236b0709f455b4e78.png

(三)局部对称翻折

1. 留右,右翻左。

自变量取绝对值型。因自变量取绝对值是偶函数,x大于等于0时,x的绝对值等于x,所以保留y轴的右边图像不变,再将y轴右边的图像对称地翻到y轴左边。

y=f(x)——————y=f(|x|)

2. 留上,下翻上型

函数值外面取绝对值型,因为当函数值为正时,函数值不变,故留上;当函数值为负时,负数的绝对值是其相反数,故x轴下方的图像要翻到x轴上方。

y=f(x)——————y=|f(x)|

67beda7d7e9848b5bcdebd8377f70ad2.png

(四)伸缩变换

1. 函数值外面乘一个正常数A,纵向伸缩,横坐标不变,各点纵坐标变A倍。

y=f(x)——————y=Af(x)

2. 纵不变,横变B分之一倍

函数中的自变量x乘一个正常数B型。

y=f(x)——————y=f(Bx)

三. 求作复杂函数的图像的步骤

1. 将复杂函数变形分解,有可能是几个基本函数复合而成;也有可能是某一个基本函数利用若干次几何变换而成,如果是后者,将其分成几步,打箭头,在箭头上下写出变换方法。

bb905a95e6bdd9eacffdbcdea06b8001.png

2. 按箭头方法,分几次变换得到所求函数图像。

3. 尽量考虑函数的三要素以及奇偶性、单调性和周期性等性质对函数图像的影响。

4. 一个函数,只要做得出图像,什么问题都可以迎刃而解。

<think>好的,用户想了解C++中计算绝对值函数及其使用示例。首先,我需要回忆C++标准库中相关的函数。 记得C++的<cstdlib>和<cmath>头文件里有abs函数,但它们的参数类型不同。比如,<cstdlib>的abs处理int、long等整数类型,而<cmath>的abs处理浮点数如float、double。另外,对于复数,应该用<complex>中的abs函数,它返回复数的模。 接下来要确认这些函数的正确用法,避免混淆。比如,用户可能误用整数版的abs来处理浮点数,导致精度丢失。这时候需要提醒他们根据数据类型选择合适的函数。 然后,考虑用户可能的实际应用场景。比如,在信号处理或几何计算中,绝对值函数很常用。结合用户提供的引用,尤其是引用[1]和引用[3],可以强调不同头文件对应的函数,并给出具体示例。 还要注意代码示例的正确性,确保语法无误。比如,使用std::前缀或在代码中包含正确的头文件。此外,可能需要指出常见的错误,比如忘记包含头文件或者类型不匹配导致的编译错误。 用户的问题还提到了示例和使用方法,所以需要分点说明不同情况下的使用方式,并附上代码片段。例如,整数、浮点数和复数的绝对值计算分别举例,并说明所需头文件。 最后,考虑用户可能的后续问题,比如性能优化、异常处理或者在不同编译器下的行为差异。但根据当前问题,主要集中于基本用法和示例即可。</think>在C++中,计算绝对值函数根据数据类型不同有以下几种实现方式: ### 一、整数类型绝对值 使用$cstdlib$头文件中的$abs()$函数: ```cpp #include <cstdlib> #include <iostream> int main() { int num = -10; std::cout << "绝对值:" << abs(num); // 输出10 return 0; } ``` 支持$int$/$long$/$long long$类型[^1] ### 二、浮点类型绝对值 使用$cmath$头文件中的$fabs()$或C++11新增的重载: ```cpp #include <cmath> #include <iostream> int main() { double num = -3.14; std::cout << "绝对值:" << std::abs(num); // 输出3.14 return 0; } ``` 注意:旧版本需用$fabs()$,C++11后可直接用$abs()$ ### 三、复数类型绝对值 使用$complex$头文件中的$abs()$,返回复数模: ```cpp #include <complex> #include <iostream> int main() { std::complex<double> z(3,4); std::cout << "模长:" << std::abs(z); // 输出5.0 return 0; } ``` 计算公式为$\sqrt{real^2 + imag^2}$[^3] ### 四、特殊应用场景 1. 信号处理(如滤波器实现中计算误差值)[^4] 2. 几何计算(距离计算) 3. 数据预处理(如异常检测中的偏差计算)[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值