numpy维度交换_numpy之转置(transpose)和轴对换

这篇博客介绍了numpy中数组的转置和轴对换方法,包括transpose、T属性和swapaxes。通过实例展示了如何在不同维度上应用这些操作,并解释了它们对数组形状的影响,帮助理解numpy中多维数组的操作。
摘要由CSDN通过智能技术生成

转置(transpose)和轴对换

转置可以对数组进行重置,返回的是源数据的视图(不会进行任何复制操作)。

转置有三种方式,transpose方法、T属性以及swapaxes方法。

1 .T,适用于一、二维数组

In [1]: import numpy as np

In [2]: arr = np.arange(20).reshape(4,5)#生成一个4行5列的数组

In [3]: arr

Out[3]:

array([[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19]])

In [4]: arr.T #求转置

Out[4]:

array([[ 0, 5, 10, 15],

[ 1, 6, 11, 16],

[ 2, 7, 12, 17],

[ 3, 8, 13, 18],

[ 4, 9, 14, 19]])

2. 高维数组

对于高维数组,transpose需要用到一个由轴编号组成的元组,才能进行转置。

这里,着实好好理解了一下。开始的时候怎么都想不明白。因为他跟矩阵转置理解起来不太一样。

对多维数组来说,确定最底层的一个基本元素位置需要用到的索引个数即是维度。这句话的理解可以结合我索引和切片的那篇文章理解。

我是这样的理解的,比如说三维的数组,那就对维度进行编号,也就是0,1,2。这样说可能比较抽象。这里的0,1,2可以理解为对shape返回元组的索引。

比如:

In [59]: arr1 = np.arange(12).reshape(2,2,3)

In [60]: arr1

Out[60]:

array([[[ 0, 1, 2],

[ 3, 4, 5]],

[[ 6, 7, 8],

[ 9, 10, 11]]])

In [61]: arr1.shape #看形状

Out[61]: (2, 2, 3) #说明这是一个2*2*3的数组(矩阵),返回的是一个元组,可以对元组进行索引,也就是0,1,2

形状

索引

2

0

2

1

3

2

所以说,transpose参数的真正意义在于这个shape元组的索引。

那么它的转置就应该是

In [62]: arr1.transpose((1,0,2))

Out[62]:

array([[[ 0, 1, 2],

[ 6, 7, 8]],

[[ 3, 4, 5],

[ 9, 10, 11]]])

比如,数值6开始的索引是[1,0,0],变换后变成了[0,1,0]。

这也说明了,transpose依赖于shape。

但是,对于为什么转置最后一个索引是不动的,颇为不解。数组或者说矩阵的这块有点太抽象了。虽然我线代成绩不错,但是这玩意不太一样啊。

3.swapaxes

虽然还有点不解的地方,但是,理解了上方那部分之后,swapaxes方法也就很好理解了。它接受一对轴编号。进行轴对换。其实也就是shape参数。

In [67]: arr2 = np.arange(16).reshape(2,2,4)

In [68]: arr2

Out[68]:

array([[[ 0, 1, 2, 3],

[ 4, 5, 6, 7]],

[[ 8, 9, 10, 11],

[12, 13, 14, 15]]])

In [69]: arr2.shape

Out[69]: (2, 2, 4)

In [70]: arr2.swapaxes(1,2)

Out[70]:

array([[[ 0, 4],

[ 1, 5],

[ 2, 6],

[ 3, 7]],

[[ 8, 12],

[ 9, 13],

[10, 14],

[11, 15]]])

In [4]: arr2.swapaxes(1,0)#转置,对比transpose(1,0,2)

Out[4]:

array([[[ 0, 1, 2, 3],

[ 8, 9, 10, 11]],

[[ 4, 5, 6, 7],

[12, 13, 14, 15]]])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值