构造一条二次bezier曲线_圆锥曲线第十八节:指标分裂与二次嵌入

目录:质点:圆锥曲线题目的三维矢量解法

写到这篇文章时,我发现我涉及到了一些我不会的知识。因此我以后把那些知识学完后可能会再修改这一节。

首先,我们对引入“指标分裂与二次嵌入”的动机作一个较长的铺垫。

我们在二次点列和二次对合一节已经初步认识了二次点列:二次点列是圆锥曲线上的点集。这类似于,一次点列是直线上的点集。在那一节我们看到,二次点列与一次点列间有许多相似性,这具体体现于:

1.二次点列与一次点列具有相同的拓扑 (由于加入了无穷远点,一次点列是紧致的)

2.二次点列中可以定义“交比”、“对合”、“调和点列”,与一次点列一样。

3.通过图中的方式,在圆锥曲线上任取一点

,则二次点列和某个一次线束可以一一对应。

f316376264f046d34eee0ae1f45410af.png

4.我们知道,线性子空间上的线性映射被称为射影变换。在经典的射影几何中,一个重要的内容就是讨论多个射影变换的复合——多个射影变换的复合仍然是射影变换。令人困惑的是下图的内容。设我们有两个一次线束

(中心点分别为
)。现在我们取出
中的一个元素,比如
。然后我们先作它与
的交点
的映射记为
),再作连线
的映射记为
),就得到了
中的一个元素。通过这样的构造,我们就得到了一个映射
,可以写作

这个映射是不是射影变换呢?看上去不应该是。

作为二次点列并不是线性子空间,因此
也不是线性映射。它们的复合映射自然也不必是线性映射,于是
不必是射影变换。然而这个结果是错的:由交比的不变性可以证明,
真的是射影变换!

6756e19b123985246d4296350d38eab3.png

根据以上四条性质,我们发现,圆锥曲线上的二次点列在作图时可以无缝融入一次点列。事实上,经典射影几何的教材中有许多定理正是建立于此。但是,这是为什么?以上四条性质的核心在于这个结论:

4c7ac5258e3da01b46a237a58740ce16.png

我们在二次点列和二次对合中给出了证明。这一证明虽然正确,但是并不自然,就像是某个巧合一样。况且从另一个角度,二次点列与一次点列仍有十分明显的不同之处:

1.一次点列是平面的线性子空间,而二次点列并不是平面的线性子空间。

2.之前第4条所说的

,虽然和射影变换有相似之处,但毕竟不是射影变换。其核心就是:
一次点列与二次点列间的一一映射是非线性的。

这种“非线性”带来的后果就是二次点列的代数意义不明确。它就像是一次点列间射影变换的某个中间产物。

一次点列的代数意义是很明确的,因为它就是三维线性空间中的二维子空间中的元素。而利用其“二维线性空间”的背景,可以构造出其中的交比、

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值