python限定变量为整数_将scipy.optimize.minimize限制为整数值

本文探讨了如何在Python中处理包含整数变量的优化问题。通过使用pulp库创建混合整数线性规划(MILP)模型,尝试解决目标函数包含浮点数除法的问题。然而,遇到TypeError,提示不支持浮点数与LpAffineExpression相除。文章提到了使用scipy.optimize.brute和itertools.product作为替代解决方案来遍历整数变量的所有可能值,以找到最小化目标函数的解。
摘要由CSDN通过智能技术生成

纸浆溶液

经过研究,我认为你的目标函数不是线性的。我在Pythonpulp库中重新创建了这个问题,但是pulp不喜欢我们用float和'LpAffineExpression'分隔。This answer表明线性规划“不理解划分”,但该注释是在添加约束的上下文中,而不是在目标函数中。那条评论把我指向了“Mixed Integer Linear Fractional Programming (MILFP)”和Wikipedia。

如果它真的起作用了(也许有人能弄清楚原因),你可以用纸浆来做:import pulp

data = [(481.79, 5), (412.04, 4), (365.54, 3)] #, (375.88, 3), (379.75, 3), (632.92, 5), (127.89, 1), (835.71, 6), (200.21, 1)]

x = pulp.LpVariable.dicts('x', range(len(data)), lowBound=0, upBound=7, cat=pulp.LpInteger)

numerator = dict((i,tup[0]) for i,tup in enumerate(data))

denom_int = dict((i,tup[1]) for i,tup in enumerate(data))

problem = pulp.LpProblem('Mixed Integer Linear Programming', sense=pulp.LpMinimize)

# objective function (doesn't work)

# TypeError: unsupported operand type(s) for /: 'float'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值