matlab幂函数e,MATLAB e的幂函数拟合

博客探讨了在MATLAB中使用e的幂函数进行拟合的问题,指出原公式存在多解导致过拟合。通过公式简化,找到了稳定唯一的参数值,降低了均方差并提高了相关系数。

公式模型有问题,过拟合。

1:如果按原公式拟合,多解:

1.1

均方差(RMSE): 64.5191515972553

残差平方和(SSR): 1007378.46332477

相关系数(R): 0.996572801344464

相关系数之平方(R^2): 0.993157348379552

修正R平方(Adj. R^2): 0.993100087696536

确定系数(DC): 0.993157348379546

卡方系数(Chi-Square): 12.1339248907432

F统计(F-Statistic): 8599.67414878121

参数        最佳估算

----------        -------------

c        -687.724245908418

b        -4.49436838593758

a        0.00393860397016069

d        -289586.774236316

f        199199574.940136

1.2

均方差(RMSE): 64.5191515479023

残差平方和(SSR): 1007378.46178361

相关系数(R): 0.996572801349713

相关系数之平方(R^2): 0.993157348390016

修正R平方(Adj. R^2): 0.993100087707087

确定系数(DC): 0.993157348390014

卡方系数(Chi-Square): 12.1339337484016

F统计(F-Statistic): 8599.67374449618

参数        最佳估算

----------        -------------

c        22.6714132571357

b        136.334068112501

a        0.00393859652096087

d        200004255.098896

f        4534422849.53771

2:原公式:

y=-c*(b*exp(-a*x)+d)+f;

可以写成:y=-c*b*exp(-a*x)-cd+f;

可进一步简化为:y=b*exp(-a*x)+c;

简化后效果一样,参数值稳定唯一:

均方差(RMSE): 64.5191515990053

残差平方和(SSR): 1007378.46337941

相关系数(R): 0.996572801344275

相关系数之平方(R^2): 0.993157348379175

修正R平方(Adj. R^2): 0.993100087696155

确定系数(DC): 0.993157348379175

卡方系数(Chi-Square): 12.1339247184114

F统计(F-Statistic): 17344.4901264713

参数        最佳估算

----------        -------------

b        -3090.8862819864

a        0.00393860303413743

c        43729.0036929803

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值