直线平面平行的判定和性质

平行直问题的转化关系示意图

graph LR A((线线平行 ))--判定=> <=性质-->B{线面平行 } B--判定=><=性质-->C((面面平行 )) C--判定=><=性质-->A

\[线//线\xlongequal[\Leftarrow 性质定理]{判定定理\Rightarrow}线//面\xlongequal[\Leftarrow 性质定理]{判定定理\Rightarrow}面//面\]

\[线//线\xlongequal[\Leftarrow 性质定理]{判定定理\Rightarrow}面//面\]

前 言

判定难点

  • 主从关系的转换,比如证明\(A_1F// DE\)不容易时,我们转而证明\(DE// A_1F\)可能很容易。山重水复疑无路,柳暗花明又一村。

  • 区分清楚判定定理和性质定理。

  • 平行关系的相互转化,

常识储备

识记如图所示的是正方体\(ABCD-A'B'C'D'\),有如下的常用结论:

(1)体对角线\(B'D\perp\)平面\(ACD'\)(如图1)

证明:令体对角线\(B'D\)和平面\(ACD'\)的交点是\(N\),由正四面体\(B'-ACD'\)可知,

\(N\)是三角形底面的中心,连接\(OD'\),则易知\(AC\perp BD\)\(AC\perp BB'\),故\(AC\perp B'D\)

同理\(AD'\perp B'D\),故体对角线\(B'D\perp\)平面\(ACD'\)

992978-20171108151131981-1823495053.png

992978-20190129204721070-1111764122.gif

(2)\(DN=\cfrac{1}{3}B'D\)(如图1,利用等体积法)

(3)平面\(ACD'//A'BC'\)(如图2)

(4)平面\(ACD'\)与平面\(A'BC'\)的间距是\(\cfrac{1}{3}B'D\),即体对角线的\(\cfrac{1}{3}\)(如图2)

(5)三棱锥\(B'-ACD'\)是正四面体。三棱锥\(D-ACD'\)是正三棱锥。

(6)如果需要将正四面体或者墙角型的正三棱锥恢复还原为正方体,我们可以先画出正方体,然后在里面找出需要的正四面体或者墙角型正三棱锥。

(7)圆内接正方形的中心就是圆心,正方形的对角线的长度就是圆的直径;球内接正方体的中心就是球心,正方体的体对角线的长度就是球的直径。

992978-20171109171036809-2092797097.png

(8)正方形的棱长设为\(2a\),则正方形的内切圆半径为\(a\),正方形的外接圆半径为\(\sqrt{2}a\),三者的关系之比为\(2:1:\sqrt{2}\)

正方体的棱长设为\(2a\),则正方体的内切球半径为\(a\),正方体的外接球半径为\(\sqrt{3}a\),三者的关系之比为\(2:1:\sqrt{3}\)

(9)正三角形的棱长设为\(2a\),则正三角形的内切圆半径为\(\cfrac{\sqrt{3}}{3}a\),正三角形的外接圆半径为\(\cfrac{2\sqrt{3}}{3}a\),三者的关系之比为\(2\sqrt{3}:1:2\)

正四面体的棱长设为\(2a\),则正四面体的内切球半径为\(\cfrac{\sqrt{6 }}{6}a\),正四面体的外接球半径为\(\cfrac{\sqrt{6 }}{2}a\),三者的关系之比为\(2\sqrt{6}:1:3\)

典例剖析

  • 线线平行

例10【2019届高三理科数学三轮模拟试题】在正方体\(ABCD-A_1B_1C_1D_1\)中,点\(O\)是四边形\(ABCD\)的中心,关于直线\(A_1O\),下列说法正确的是【】

$A.A_1O//D_1C$ $B.A_1O\perp BC$ $C.A_1O//平面B_1CD_1$ $D.A_1O\perp平面AB_1D_1$

分析:由于题目中给定点\(O\)是下底面的中心,故我们想到也做出上底面的中心\(E\),如图所示,

992978-20190613212949007-201314607.png

当连结\(CE\)时,我们就很容易看出\(A_1O//CE\),以下做以说明;

由于\(OC//A_1E\),且\(OC=A_1E\),则可知\(A_1O//CE\)

又由于\(A_1O\not \subset 面B_1CD_1\)\(CE \subset 面B_1CD_1\),故\(A_1O//平面B_1CD_1\) ,故选\(C\)

此时,我们也能轻松的排除\(A\)\(B\)\(D\)三个选项是错误的。

  • 线面平行

例1【2016江苏高考卷】如图,在直三棱柱\(ABC-A_1B_1C_1\)中,\(D\)\(E\)分别是\(AB\)\(BC\)的中点,点\(F\)在侧棱\(BB_1\)上,且\(B_1D\perp A_1F\)\(A_1C_1\perp A_1B_1\)

求证:(1)直线\(DE//\)平面\(A_1C_1F\).

分析:现在需要\(\Leftarrow\)直线\(DE//\)平面\(A_1C_1F\)

\(\Leftarrow\)直线\(DE//\)平面\(A_1C_1F\)内的某直线\(?\)

某条直线可能是三角形的边界线,三角形中线,高线,中位线,或者需要我们做出的某条辅助直线。

992978-20170927224654465-801173223.png

证明:因为\(D\)\(E\)分别是\(AB\)\(BC\)的中点,则有\(DE//AC//A_1C_1\)

又因为直线\(A_1C_1\subsetneqq\)平面\(A_1C_1F\)

\(DE\not\subseteq\)平面\(A_1C_1F\),则直线\(DE//\)平面\(A_1C_1F\)

求证(2)平面\(B_1DE\perp\)平面\(A_1C_1F\).

分析:\(\Leftarrow\)平面\(B_1DE\perp\)平面\(A_1C_1F\)

\(\Leftarrow\)一个面内的某条直线\(\perp\)另一个面内的两条相交直线。

此时往往需要结合图形及已知条件来确定,比如将一个面内的某条直线暂时确定为直线\(A_1F\)

那么此时就需要在另一个平面\(B_1DE\)内找两条相交直线,且都要能证明和直线\(A_1F\)

如果能找到,则这样的思路就基本固定下来了,

992978-20170927224654465-801173223.png

思路一大致为:\(A_1F\perp\begin{cases}B_1D\\ DE\end{cases}\)

从而转证\(DE\perp A_1F\),从而转证\(A_1C_1\perp A_1F\)

从而转证\(A_1C_1\perp\)包含\(A_1F\)的平面\(ABB_1A_1\)

从而转证\(A_1C_1\perp\begin{cases}A_1B_1\\ A_1A\end{cases}\)

992978-20170927224654465-801173223.png

思路二大致为:\(B_1D\perp\begin{cases}A_1F\\ A_1C_1\end{cases}\)

从而转证\(A_1C_1\perp B_1D\)

从而转证\(A_1C_1\perp\)包含\(B_1D_1\)的平面\(ABB_1A_1\)

从而转证\(A_1C_1\perp\begin{cases}A_1B_1\\ A_1A\end{cases}\)

证明:你能自主写出证明过程吗?

【反思提升】上述解答中的思路一中,在分析需要证明\(A_1F\perp DE\)时,包含了视角上的转换,如证明\(A_1F\perp DE\)不容易时,我们转而证明\(DE\perp A_1F\),即转证\(A_1C_1\perp A_1F\),从而接下来就可以考虑证明线面垂直,从而转证\(A_1C_1\perp\)包含\(A_1F\)的平面\(ABB_1A_1\)

例8已知底面是平行四边形的四棱锥\(P-ABCD\),点\(E\)\(PD\)上,且\(PE:ED=2:1\),在棱\(PC\)上是否存在一点\(F\),使得\(BF//\)\(AEC\),证明并说出点\(F\)的位置。相关课件

992978-20181222195505718-1048125426.png

分析:在棱\(PC\)上存在一点\(F\)\(F\)\(PC\)的中点,使得\(BF//\)\(AEC\),理由如下:

\(PE\)的中点\(H\)\(PC\)的中点\(F\),联结\(BF\)\(HF\)\(BH\),联结\(AC\)\(BD\),交点为\(O\)

则由\(HF\)\(\Delta PEC\)的底边\(EC\)的中位线,故\(HF//EC\)

\(EO\)\(\Delta DBH\)的底边\(BH\)的中位线,故\(BH//EO\)

(说明:这样的话,平面\(BHF\)内的两条相交直线\(HF\)\(BH\)分别平行与另一个平面\(AEC\)内的两条相交直线\(EO\)\(EC\),则这两个平面就平行)

又由于\(HF\subsetneqq\)平面\(BHF\)\(BH\subsetneqq\)平面\(BHF\)\(BH\cap HF=H\)

\(EO\subsetneqq\)平面\(AEC\)\(EC\subsetneqq\)平面\(AEC\)\(EO\cap EC=E\)

则平面\(BHF//\)平面\(AEC\)

\(BF\subsetneqq\)平面\(BHF\)

则有\(BF//\)平面\(AEC\),猜想得证。

  • 面面平行

例19【2018宝鸡市高三数学第一次质量检测第9题】已知四棱锥\(S-ABCD\)的底面为平行四边形,且\(SD\perp 面ABCD\)\(AB=2AD=2SD\)\(\angle DCB=60^{\circ}\)\(M、N\)分别是\(SB、SC\)的中点,过\(MN\)作平面\(MNPQ\)分别与线段\(CD、AB\)相交于点\(P、Q\)

(1).在图中作出平面\(MNPQ\),使面\(MNPQ//面SAD\)(不要求证明);

分析:如图所示,点\(P、Q\)分别是线段\(CD、AB\)的中点,联结\(NP、PQ、QM\)所得的平面即为所求做的平面。

992978-20180124183121975-55629616.png

反思总结:1、一般的考法是题目作出这样的平面,然后要求我们证明面面平行,现在是要求我们利用面面平行的判定定理作出这样的平面,应该是要求提高了。

2、注意图中的线的虚实。

(2).【文】若\(|\overrightarrow{AB}|=4\),在(1)的条件下求多面体\(MNCBPQ\)的体积。

【理】若\(\overrightarrow{AQ}=\lambda \overrightarrow{AB}\),是否存在实数\(\lambda\),使二面角\(M-PQ-B\)的平面角大小为\(60^{\circ}\)?若存在,求出\(\lambda\)的值;若不存在,请说明理由。

【文科】法1:992978-20180121211933349-425986972.png

如图所示,连接\(PB、NB\),有题目可知在(1)的情形下,平面\(MNPQ\)与平面\(ABCD\)垂直,由题目可知,\(AB=4\)\(BC=PC=2\)\(SD=2\)\(NP=1\)

\(SD\perp面ABCD\)\(NP//SD\),则\(NP\perp 面ABCD\)

\(\Delta PCB\)是边长为2的等边三角形,则\(V_{N-PBC}=\cfrac{1}{3}\cdot S_{\Delta PBC}\cdot |NP|=\cfrac{1}{3}\cdot \cfrac{\sqrt{3}}{4}\cdot 4\cdot 1=\cfrac{\sqrt{3}}{3}\)

\(MN//BC\)\(MN \perp面SAD\),面\(MNPQ\)是直角梯形,\(MN=NP=1\)\(PQ=2\)

连接\(BD\)\(PQ\)于点\(H\),在\(\Delta ABD\)中,由余弦定理可知,\(BD=2\sqrt{3}\)\(AB^2=AD^2+BD^2\),则\(BD\perp AD\)

\(BH\perp PQ\),且\(BH\perp NP\),故\(BH\perp 面MNPQ\)

\(V_{B-MNPQ}=\cfrac{1}{3}\cdot S_{MNPQ}\cdot |BH|=\cfrac{1}{3}\cdot \cfrac{(1+2)\cdot 1}{2}\cdot \sqrt{3}=\cfrac{\sqrt{3}}{2}\)

\(V_{MNCBPQ}=V_{B-MNPQ}+V_{N-PBC}=\cfrac{\sqrt{3}}{2}+\cfrac{\sqrt{3}}{3}=\cfrac{5\sqrt{3}}{6}\)

法2:992978-20180121211928521-1257430086.png

待补充。

【理科】待补充。

转载于:https://www.cnblogs.com/wanghai0666/p/11187579.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值