赫尔德不等式证明闵可夫斯基不等式

又 由赫尔德不等式可得: 两边同时乘以得到闵可夫斯基不等式: 等号成立条件:或

2019-01-29 17:00:42

阅读数 515

评论数 0

裴蜀定理的证明

若两个非零整数 a,b 互质的充要条件是存在aX+bY=1(X*Y≠0,X,Y∈Z)。 充分性证明:                     不妨设 a>0 , b>0 , a≠b;                      ∵a , b两个数互质                     ...

2018-12-28 19:50:25

阅读数 42

评论数 0

判定直线与平面垂直

 

2018-11-06 21:30:12

阅读数 455

评论数 0

欧几里得算法的原理

欧几里得算法求解两个正整数的最大公约数。 设两个正整数a,b使得a≥b,则(a,b)的最大公约数gcd(a,b)为: ①a÷b = q1......r1 当r1=0时则gcd(a,b)为b; 若r1≠0则继续 ②b÷r1=q2.....r2 当r2=0时 则gcd(a,b)为r1 若r2...

2018-10-10 20:03:30

阅读数 74

评论数 0

加权平均值不等式的证明

设w1 + w2 + ... + wn = 1 (wi ≥0,) , xi>0; 则有x1*w1 + x2*w2 + ... +xn*wn ≥ x1^w1 * x2^w2 * ...* xn^wn 证明过程 设f(x) = ln x ∵f'(x) = 1/x;  ∴恒有f'(x) > 0...

2018-09-23 21:34:57

阅读数 1018

评论数 0

C++数组

数组作为C++编程的核心,可以说几乎100%的程序都要用到数组 数组其实就是用一段连续的内存空间来存储某一类元素的集合 它的特点是便于访问 1.1一维数组 一维数组Array在内存中的形式Size≥1   Address:     0x0F   Name:        ...

2018-08-26 22:55:19

阅读数 40

评论数 0

幂平均不等式,幂平均不等式加权形式

  讨论幂平均不等式我们先了解一个幂函数  性质 \\  函数    y = f(x) = x^(q/p)   (x>0 ; p≠q ; p,q ≠ 0) 值域 (0 , +∞)   f(x) > 0 一阶导数 (q/p)*x^( (q-p)/p )  二阶导数 ...

2018-08-11 21:41:25

阅读数 580

评论数 0

高中数学伯努利不等式的证明

        最初是从高中数学选修4-5偶然看到伯努利不等式,但是书中整数次幕的形式,后来百度发现 原来伯努利不等式还可以推广到实数幕的形式以及一般形式;        既然看到就想办法证明岂能这么糊涂的就相信它的正确性,但是用普通方法根本无法证明,实 在头疼,被迫自学导数,之后整理出来方...

2018-07-31 21:20:59

阅读数 2926

评论数 0

n个集合的容斥原理

我们知道两个集合的容斥关系 A ∪ B = A + B - A∩B。   三个集合又有怎样的关系呢 A∪B∪C = A+B+C - (A∩B+A∩C+B∩C) + A∩B∩C 三个集合的容斥原理关系这里不做推导过程可以看图自行推导 从上面的两个例子中不难发现几个集合的并集等于 ...

2018-07-28 10:51:01

阅读数 2382

评论数 0

均值不等式四个公式

假设有一根长度为24cm的钢筋,现在对其进行截取焊接成一个长方体框架, 如何截取焊接才能保证长方体的体积最大? 下面引出均值不等式可以解决这个问题。 则有:          对进行证明: 构建两个序列 由排序不等式 顺序和≥乱序和≥倒序和 显然有下列不等...

2018-07-25 11:50:05

阅读数 10853

评论数 0

琴生不等式的证明

琴生不等式:若函数在区间[a,b]上是凸函数,且都是区间[a,b]内的数; 则有①;              若 且 则有②。 两个不等式等号成立的条件是 当且仅当时等号成立 先来证明②式然后让 就可以直接证明不等式①了。   我们需要一个辅助结论 若都是区间[a,b]内的数,  ...

2018-07-24 15:51:38

阅读数 4909

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭