前言
配凑法也是高中数学中比较常用的一种数学方法。
使用场景
为了将分式函数化简,使用配凑法;
为了使用均值不等式,使用配凑法;
典例剖析
例1【配凑和为定值,为使用均值不等式】已知\(x,y>0\),\(2x+3y=4\),求\(xy\)的最大值;
法1:\(xy=\cfrac{6xy}{6}=\cfrac{(2x)\cdot (3y)}{6}\leq \cfrac{1}{6}\cdot \Big(\cfrac{2x+3y}{2}\Big)^2=\cfrac{2}{3}\)
当且仅当
法2:代换法,变量集中。
例2【配凑为消去一部分分母,便于使用均值不等式】已知\(a>1,b>0, a+b=4\),求\(\cfrac{1}{a-1}+\cfrac{4}{b}\)的最小值。
分析:由于\(a+b=4\Longrightarrow (a-1)+b=3\),
故\(\cfrac{1}{a-1}+\cfrac{4}{b}=\cfrac{1}{3}(\cfrac{1}{a-1}+\cfrac{4}{b})\times 3\) \(=\cfrac{1}{3}(\cfrac{1}{a-1}+\cfrac{4}{b})\times [(a-1)+b]\)
\(=\cfrac{1}{3}(1+4+\cfrac{b}{a-1}+\cfrac{4(a-1)}{b})\geqslant \cfrac{1}{3}(5+2\sqrt{4})=3\),
当且仅当
例3【】研究函数\(f(x)=\cfrac{x^2}{3-x}\)的图像或者单调性,
分析:
①[配凑法]变形,\(\cfrac{x^2}{3-x}=-\cfrac{x^2}{x-3}=-\cfrac{(x-3)^2+6x-9}{x-3}\)\(=-(x-3)-\cfrac{6x-18+9}{x-3}=-(x-3)-\cfrac{9}{x-3}-6\)\(=-[(x-3)+\cfrac{9}{x-3}]-6\);
其图像可以借助\(f(x)=x+\cfrac{9}{x}\)的图像变换得到,借助图像就可以研究其所有性质了;
②[换元法]变形,令\(3-x=t\),则\(x=3-t\),则\(f(x)=\cfrac{x^2}{3-x}=\cfrac{(3-t)^2}{t}\)\(=\cfrac{t^2-6t+9}{t}=t+\cfrac{9}{t}-6=(3-x)+\cfrac{9}{3-x}-6\)\(=-[(x-3)+\cfrac{9}{x-3}]-6\);
③也可以使用导数法研究,但是和上述方法[其优越性在于能用上我们积累的常用的模板函数的性质]相比,感觉繁琐,
例4已知函数\(f(x)\)满足条件 \(f(\sqrt{x}+1)=x+2\sqrt{x}\),求\(f(x)\)的解析式;
分析: \(f(\sqrt{x}+1)=x+2\sqrt{x}=(\sqrt{x}+1)^2-1\),
注意右端需要配凑出以\(\sqrt{x}+1\)为整体变量的代数式,以便于下一步的代换,到此配凑工作结束;
令\(\sqrt{x}+1=t\),则新元\(t\ge 1\)
故解析式为\(f(t)=t^2-1(t\ge 1)\),再将自变量替换为我们适应的\(x\),
则所求的解析式为\(f(x)=x^2-1(x\ge 1)\)。
解后反思:在等号的右端配凑出关于自变量整体的代数式,然后做代换。