高等数学笔记-乐经良老师-第五章-积分(Ⅰ)-定积分与不定积分-第五节-积分法

高等数学笔记-乐经良

第五章-积分(Ⅰ)-定积分与不定积分

第五节 积分法

一、凑微分法(第一换元法)

01 不定积分的凑微分法
  • 凑微分法
    • ∫ f ( x ) d x = F ( x ) + C , φ ( x ) \int f(x) d x=F(x)+C, \varphi(x) f(x)dx=F(x)+C,φ(x) 可导, 则 ∫ f ( φ ( x ) ) φ ′ ( x ) d x = F ( φ ( x ) ) + C \int f(\varphi(x)) \varphi^{\prime}(x) d x=F(\varphi(x))+C f(φ(x))φ(x)dx=F(φ(x))+C
  • 过程
    • ∫ f ( φ ( x ) ) φ ′ ( x ) d x ⇒ ∫ f ( φ ( x ) ) d φ ( x ) ⇒ F ( φ ( x ) ) + C \int f(\varphi(x)) \varphi^{\prime}(x) d x \Rightarrow \int f(\varphi(x)) d \varphi(x) \Rightarrow F(\varphi(x))+C f(φ(x))φ(x)dxf(φ(x))dφ(x)F(φ(x))+C
  • 注意
    • 观察哪部分可凑成 φ ′ d x = d φ \varphi^{\prime} d x=d \varphi φdx=dφ,而使得微分号前剩下的部分恰好是 φ \varphi φ 的可积表达式
  • 常用的凑微分
    • φ ′ ( x ) d x = d φ ( x ) \varphi'(x)dx=d\varphi(x) φ(x)dx=dφ(x)
    • ∫ f ( a x + b ) d x = 1 a ∫ f ( a x + b ) d ( a x + b ) \int f(ax+b)dx=\frac1a \int f(ax+b)d(ax+b) f(ax+b)dx=a1f(ax+b)d(ax+b)
    • 2 x d x = d x 2 2xdx=dx^2 2xdx=dx2
    • c o s x d x = d s i n x cosxdx=dsinx cosxdx=dsinx
    • s e c 2 x d x = 1 c o s 2 x d x = d t a n x sec^2xdx=\frac{1}{cos^2x}dx=dtanx sec2xdx=cos2x1dx=dtanx
02 定积分的凑微分法

凑微分法(条件与不定积分有区别

∫ f ( x ) d x = F ( x ) + C \int f(x) d x=F(x)+C f(x)dx=F(x)+C f f f φ ′ \varphi^{\prime} φ 连续,则 ∫ a b f ( φ ( x ) ) φ ′ ( x ) d x = F ( φ ( x ) ) ∣ a b \int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x=\left.F(\varphi(x))\right|_{a} ^{b} abf(φ(x))φ(x)dx=F(φ(x))ab .

二、第二换元法

01 不定积分的第二换元法
  • 第二换元法
    • ∫ f ( ψ ( t ) ) ψ ′ ( t ) d t = F ( t ) + C \int f(\psi(t)) \psi^{\prime}(t) d t=F(t)+C f(ψ(t))ψ(t)dt=F(t)+C, 且 ψ \psi ψ 单调可导, ψ ′ ≠ 0 \psi^{\prime} \neq 0 ψ=0,则 ∫ f ( x ) d x = F ( ψ − 1 ( x ) ) + C \int f(x) d x=F\left(\psi^{-1}(x)\right)+C f(x)dx=F(ψ1(x))+C
  • 过程
    • ∫ f ( x ) d x \int f(x) d x f(x)dx 作变量代换 x = ψ ( t ) x=\psi(t) x=ψ(t)
    • ⇒ ∫ f ( ψ ( t ) ) ψ ′ ( t ) d t \Rightarrow \int f(\psi(t)) \psi^{\prime}(t) d t f(ψ(t))ψ(t)dt 可积
    • ⇒ F ( t ) + C \Rightarrow F(t)+C F(t)+C
      ↑ \uparrow
      t = ψ − 1 ( x ) t=\psi^{-1}(x) t=ψ1(x)
02 定积分的第二换元法
  • 第二换元法
    • f ( x ) ∈ C [ a , b ] , ψ ′ f(x) \in C[a, b], \psi^{\prime} f(x)C[a,b],ψ 连续, ψ ( α ) = a , ψ ( β ) = b \psi(\alpha)=a, \psi(\beta)=b ψ(α)=a,ψ(β)=b
    • t t t α , β \alpha, \beta α,β 之间时, ψ ( t ) ∈ [ a , b ] \psi(t) \in[a, b] ψ(t)[a,b],则 ∫ a b f ( x ) d x = ∫ α β f ( ψ ( t ) ) ψ ′ ( t ) d t \int_{a}^{b} f(x) d x=\int_{\alpha}^{\beta} f(\psi(t)) \psi^{\prime}(t) d t abf(x)dx=αβf(ψ(t))ψ(t)dt .

三、定积分换元法的说明

01 定积分遵循第一二换元法的表述
(1) 定积分的第一换元法

凑微分法(条件与不定积分有区别

∫ f ( x ) d x = F ( x ) + C \int f(x) d x=F(x)+C f(x)dx=F(x)+C f f f φ ′ \varphi^{\prime} φ 连续,则 ∫ a b f ( φ ( x ) ) φ ′ ( x ) d x = F ( φ ( x ) ) ∣ a b \int_{a}^{b} f(\varphi(x)) \varphi^{\prime}(x) d x=\left.F(\varphi(x))\right|_{a} ^{b} abf(φ(x))φ(x)dx=F(φ(x))ab .

(2) 定积分的第二换元法

第二换元法

f ( x ) ∈ C [ a , b ] , ψ ′ f(x) \in C[a, b], \psi^{\prime} f(x)C[a,b],ψ 连续, ψ ( α ) = a , ψ ( β ) = b \psi(\alpha)=a, \psi(\beta)=b ψ(α)=a,ψ(β)=b

t t t α , β \alpha, \beta α,β 之间时, ψ ( t ) ∈ [ a , b ] \psi(t) \in[a, b] ψ(t)[a,b],则 ∫ a b f ( x ) d x = ∫ α β f ( ψ ( t ) ) ψ ′ ( t ) d t \int_{a}^{b} f(x) d x=\int_{\alpha}^{\beta} f(\psi(t)) \psi^{\prime}(t) d t abf(x)dx=αβf(ψ(t))ψ(t)dt .

02 定积分总结为一种换元法的表述
换元积分法

同济表述:

假设函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上连续,函数 x = φ ( t ) x=\varphi(t) x=φ(t) 满足条件:

(1) φ ( α ) = a , φ ( β ) = b \varphi(\alpha)=a, \varphi(\beta)=b φ(α)=a,φ(β)=b

(2) φ ( t ) \varphi(t) φ(t) [ α , β ] [\alpha, \beta] [α,β] (或 [ β , α ] ) [\beta, \alpha]) [β,α]) 上具有连续导数,且其值域 R φ = [ a , b ] R_{\varphi}=[a, b] Rφ=[a,b],则有:
∫ a b f ( x ) d x = ∫ a β f [ φ ( t ) ] φ ′ ( t ) d t . \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{\beta} f[\varphi(t)] \varphi^{\prime}(t) \mathrm{d} t . abf(x)dx=aβf[φ(t)]φ(t)dt.
上述公式称做定积分的换元公式。

武忠祥表述:

f ( x ) f(x) f(x) 在区间 I I I 上连续, 函数 x = φ ( t ) x=\varphi(t) x=φ(t) 满足以下条件:

(1) φ ( α ) = a , φ ( β ) = b \varphi(\alpha)=a, \varphi(\beta)=b φ(α)=a,φ(β)=b

(2) φ ( t ) \varphi(t) φ(t) [ α , β ] [\alpha, \beta] [α,β]( 或 [ β , α ] [\beta, \alpha] [β,α] )上有连续导数,且 R φ ⊆ I R_{\varphi} \subseteq I RφI,则:
∫ a b f ( x ) d x = ∫ a β f ( φ ( t ) ) φ ′ ( t ) d t . \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t . abf(x)dx=aβf(φ(t))φ(t)dt.

四、分部积分法

00 分部积分法
  • ( u v ) ′ = u ′ v + u v ′ ⇒ u v ′ = ( u v ) ′ − u ′ v (u v)^{\prime}=u^{\prime} v+u v^{\prime} \Rightarrow u v^{\prime}=(u v)^{\prime}-u^{\prime} v (uv)=uv+uvuv=(uv)uv
  • 导出( u ′ , v ′ u^{\prime}, v^{\prime} u,v 可积时)
01 不定积分的分部积分法
  • 概述
    • ∫ u d v = u v − ∫ v d u \int u dv=u v-\int vdu udv=uvvdu
    • ∫ u v ′ d x = u v − ∫ u ′ v d x \int u v^{\prime} d x=u v-\int u^{\prime} v d x uvdx=uvuvdx
  • 过程
    • ∫ u v ′ d x ⇒ ∫ u d v = u v − ∫ v d u ⇒ u v − ∫ u ′ v d x \int u v^{\prime} d x \Rightarrow \int u d v=u v-\int v d u \Rightarrow u v-\int u^{\prime} v d x uvdxudv=uvvduuvuvdx
  • 适用
    • 适用于被积函数为两类函数乘积的积分
  • 如何选择 v ′ v' v
    • 一般而言依如下次序: e α x , sin ⁡ x ( e^{\alpha x}, \sin x( eαx,sinx( cos ⁡ x ) , x m \cos x), x^{m} cosx),xm
  • 凑微分优先权
    • 反三角 > 对数函数 > 幂函数 > 三角函数 > 指数函数
  • 规律
    • 保证 u u u 尽量简单
    • 将被积函数中尽量多的式子凑微分
02 定积分的分部积分法
  • 分部积分法
    • u ′ , v ′ ∈ C [ a , b ] ⇒ u^{\prime}, v^{\prime} \in C[a, b] \Rightarrow u,vC[a,b] ∫ a b u v ′ d x = u v ∣ a b − ∫ u ′ v d x \int_{a}^{b} u v^{\prime} d x=\left.u v\right|_{a} ^{b}-\int u^{\prime} v d x abuvdx=uvabuvdx
  • 过程
    • ∫ a b u v ′ d x ⇒ ∫ a b u d v = u v ∣ a b − ∫ a b v d u ⇒ u v ∣ a b − ∫ u ′ v d x \int_{a}^{b} u v^{\prime} d x \Rightarrow \int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u \Rightarrow \left.u v\right|_{a} ^{b}-\int u^{\prime} v d x abuvdxabudv=uvababvduuvabuvdx

五、某几种函数的积分法

以不定积分为例

01 有理函数的积分
(1) 有理分式函数

对 于 有 理 分 数 函 数 x n x m , 有 理 真 分 式    m > n 有 理 假 分 式    m ⩽ n 有 理 假 分 式 = 有 理 真 分 式 + 多 项 式 \begin{aligned} & 对于有理分数函数\frac{x^n}{x^m},\\ & \quad\quad\quad 有理真分式 \ \ m>n\\ & \quad\quad\quad 有理假分式 \ \ m\leqslant n\\ & \quad\quad\quad 有理假分式=有理真分式+多项式 \end{aligned} xmxn  m>n  mn=+

(2) 有理分式积分
  • 形式

    • ∫ P ( x ) Q ( x ) d x \int \frac{P(x)}{Q(x)} d x Q(x)P(x)dx,其中 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 均为多项式
  • 最简分式的形式

    • A ( x − a ) k C x + D ( x 2 + p x + q ) k \frac{A}{(x-a)^{k}} \quad \frac{C x+D}{\left(x^{2}+p x+q\right)^{k}} (xa)kA(x2+px+q)kCx+D

    • ∫ C x + D ( x 2 + p x + q ) k d x = C 2 ∫ d ( x 2 + p x + q ) ( x 2 + p x + q ) k d x + ∫ D − p 2 ( x 2 + p x + q ) k d x \begin{aligned} & \int \frac{C x+D}{\left(x^{2}+p x+q\right)^{k}} d x = \frac{C}{2} \int \frac{d\left(x^{2}+p x+q\right)}{\left(x^{2}+p x+q\right)^{k}} d x+\int \frac{D-\frac{p}{2}}{\left(x^{2}+p x+q\right)^{k}} d x \end{aligned} (x2+px+q)kCx+Ddx=2C(x2+px+q)kd(x2+px+q)dx+(x2+px+q)kD2pdx

      ​ 可以求出不定积分 配方后分布得递推公式

(3) 代数基本方程

任何有理多项式在实数范围内均能化成一次因式与二次因式的方程

举例:
( x 3 + 1 ) = ( x + 1 ) ( x 2 − x + 1 ) ( x 4 + 1 ) = ( x 2 + 2 x + 1 ) ( x 2 − 2 x + 1 ) ( x − 1 ) 2 → 二 重 一 次   ;   ( x − 5 ) 3 → 三 重 一 次   ;   ( x 2 + 7 ) 5 → 五 重 二 次 \begin{aligned} & (x^3+1)=(x+1)(x^2-x+1)\\ & (x^4+1)=(x^2+\sqrt2x+1)(x^2-\sqrt2x+1)\\ & (x-1)^2\rightarrow二重一次\ ;\ (x-5)^3\rightarrow三重一次\ ;\ (x^2+7)^5\rightarrow五重二次 \\ \end{aligned} (x3+1)=(x+1)(x2x+1)(x4+1)=(x2+2 x+1)(x22 x+1)(x1)2 ; (x5)3 ; (x2+7)5

(4) 一般解题变形步骤
  • 化假分式 = 多项式 + 真分式

  • 分母分解为一次式或二次三项式(将真分式分母分解成一次或二次最简因式)

  • 分式分解为一些最简分式之和后逐项积分

    • 裂项(待定系数法)
    • 通过解方程组求出系数
    • 不定积分求解
02 有理三角函数的积分
(1) 有理三角函数一般方法

尽量用凑微分法,例如函数各项均含 s i n x sinx sinx(或 c o s x cosx cosx)的奇次幂;

或各项含 s i n x sinx sinx c o s x cosx cosx 的幂次数和均为偶数。

(2) 积化和差与和差化积公式

∫ sin ⁡ m x ⋅ cos ⁡ n x a n d ∫ sin ⁡ m x ⋅ sin ⁡ n x a n d ∫ cos ⁡ m x ⋅ cos ⁡ n x \int \sin mx \cdot \cos nx \quad and \quad \int \sin mx \cdot \sin nx \quad and \quad\int \cos mx \cdot \cos nx sinmxcosnxandsinmxsinnxandcosmxcosnx

1.当 m = n m=n m=n 时,倍角公式或降幂公式

2.当 m ≠ n m \neq n m=n 时,
sin ⁡ m x ⋅ cos ⁡ n x = 1 2 [ sin ⁡ ( m + n ) x + sin ⁡ ( m − n ) x ] sin ⁡ m x ⋅ sin ⁡ n x = 1 2 [ cos ⁡ ( m − n ) x − cos ⁡ ( m + n ) x ] cos ⁡ m x ⋅ cos ⁡ n x = 1 2 [ cos ⁡ ( m + n ) x + cos ⁡ ( m − n ) x ] \begin{aligned} & \sin mx \cdot \cos nx = \frac12[\sin(m+n)x+\sin(m-n)x]\\ & \sin mx \cdot \sin nx = \frac12[\cos(m-n)x-\cos(m+n)x]\\ & \cos mx \cdot \cos nx = \frac12[\cos(m+n)x+\cos(m-n)x] \end{aligned} sinmxcosnx=21[sin(m+n)x+sin(mn)x]sinmxsinnx=21[cos(mn)xcos(m+n)x]cosmxcosnx=21[cos(m+n)x+cos(mn)x]

(3) ∫ R ( sin ⁡ x , cos ⁡ x ) d x \int R(\sin x,\cos x)dx R(sinx,cosx)dx
  • R ( − sin ⁡ x , cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x )   ⇒ 令 cos ⁡ x = t R(-\sin x,\cos x)=-R(\sin x,\cos x)\ \Rightarrow 令\cos x=t R(sinx,cosx)=R(sinx,cosx) cosx=t

  • R ( sin ⁡ x , − cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x )   ⇒ 令 sin ⁡ x = t R(\sin x,-\cos x)=-R(\sin x,\cos x)\ \Rightarrow 令\sin x=t R(sinx,cosx)=R(sinx,cosx) sinx=t

  • R ( − sin ⁡ x , − cos ⁡ x ) = R ( sin ⁡ x , cos ⁡ x )   ⇒ 令 tan ⁡ x = t R(-\sin x,-\cos x)=R(\sin x,\cos x)\ \Rightarrow 令\tan x=t R(sinx,cosx)=R(sinx,cosx) tanx=t

  • ∫ sin ⁡ 2 m x ⋅ cos ⁡ 2 n d x   ,   m , n > 0 \int \sin^{2m}x\cdot\cos^{2n} dx\ , \ m,n>0 sin2mxcos2ndx , m,n>0 二倍角公式降幂

(4) 万能代换

t = tan ⁡ x 2 ⇒ d x = 2 d t 1 + t 2   ,   x = 2 arctan ⁡ x { sin ⁡ x = 2 t 1 + t 2 cos ⁡ x = 1 − t 2 1 + t 2 \begin{aligned} & t=\tan \frac{x}{2} \Rightarrow d x=\frac{2 d t}{1+t^{2}}\ , \ x=2\arctan x\\ & \left\{\begin{array}{l} \sin x = \frac{2t}{1+t^2} \\ \cos x = \frac{1-t^2}{1+t^2} \end{array}\right. \end{aligned} t=tan2xdx=1+t22dt , x=2arctanx{sinx=1+t22tcosx=1+t21t2

03 无理函数的积分

第一类:含 a x + b n \sqrt[n]{a x+b} nax+b a x + b c x + d m \sqrt[m]{\frac{ax+b}{cx+d}} mcx+dax+b e a x + b e c x + d m \sqrt[m]{\frac{e^{ax}+b}{e^{cx}+d}} mecx+deax+b x m \sqrt[m]{x} mx ⇒ \Rightarrow 直接令其代换成 t t t(换元)

第二类:含 a x 2 + b x + c   ,   a ≠ 0 \sqrt{ax^2+bx+c}\ ,\ a\neq0 ax2+bx+c  , a=0

​ 步骤:1.提系数,再配方

​ 2.注意 a a a 的正负

​ 3.三个基本形式:

​ ① a 2 − x 2    ,   令   x = a sin ⁡ t   ,   t ∈ [ − π 2 , π 2 ]   ,   a 2 − a 2 sin ⁡ 2 t = a cos ⁡ t \sqrt{a^2-x^2}\ \ ,\ 令 \ x=a\sin t \ , \ t \in[-\frac{\pi}{2},\frac{\pi}{2}] \ , \ \sqrt{a^2-a^2\sin^2 t}=a\cos t a2x2   ,  x=asint , t[2π,2π] , a2a2sin2t =acost

​ ② x 2 + a 2    ,   令   x = a tan ⁡ t   ,   t ∈ [ − π 2 , π 2 ] \sqrt{x^2+a^2}\ \ ,\ 令 \ x=a\tan t \ , \ t \in[-\frac{\pi}{2},\frac{\pi}{2}] x2+a2   ,  x=atant , t[2π,2π]

​ ③ x 2 − a 2    ,   令   x = a sec ⁡ t   ,   t ∈ [ 0 , π 2 ]   或   [ π 2 , π ] \sqrt{x^2-a^2}\ \ ,\ 令 \ x=a\sec t \ , \ t \in[0,\frac{\pi}{2}]\ 或\ [\frac{\pi}{2},\pi] x2a2   ,  x=asect , t[0,2π]  [2π,π]

六、常用结论或公式

01 对称区间的积分公式

∫ − a a f ( x ) d x = { 0 f ( x )  为奇函数  2 ∫ 0 a f ( x ) d x f ( x )  为偶函数  \int_{-a}^{a} f(x) d x=\left\{\begin{array}{cc}0 & f(x) \text { 为奇函数 } \\ 2 \int_{0}^{a} f(x) d x & f(x) \text { 为偶函数 }\end{array}\right. aaf(x)dx={020af(x)dxf(x) 为奇函数 f(x) 为偶函数 

02 三角函数形式的积分公式

从几何上考虑

💝💝💝:要记住会默写

✍✍✍:会推导不要背
💝 ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x 💝 ∫ 0 π f ( sin ⁡ x ) d x = 2 ∫ 0 π 2 f ( sin ⁡ x ) d x 💝 ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x 💝 ∫ 0 π x f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x 💝 ∫ 0 π 2 x ( f ( sin ⁡ x ) + f ( cos ⁡ x ) ) d x = π 2 ∫ 0 π 2 f ( sin ⁡ x ) d x ✍ ∫ sin ⁡ n x d x = − cos ⁡ x sin ⁡ n − 1 x n + n − 1 n ∫ sin ⁡ n − 2 x d x ✍ ∫ cos ⁡ n x d x = sin ⁡ x cos ⁡ n − 1 x n + n − 1 n ∫ cos ⁡ n − 2 x d x ✍ ∫ tan ⁡ n x d x = tan ⁡ n − 1 x n − 1 − ∫ tan ⁡ n − 2 x d x ✍ ∫ d x a sin ⁡ x + b cos ⁡ x = 1 a 2 + b 2 ln ⁡ ∣ tan ⁡ x + arctan ⁡ b a 2 ∣ + C \begin{aligned} & 💝\int_{0}^{\frac{\pi}{2}} f(\sin x) d x=\int_{0}^{\frac{\pi}{2}} f(\cos x) d x\\ & 💝\int_{0}^{\pi} f(\sin x) d x=2 \int_{0}^{\frac{\pi}{2}} f(\sin x) d x\\ & 💝\int_{0}^{\pi} xf(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x\\ & 💝\int_{0}^{\pi} x f(\sin x) d x=\pi \int_{0}^{\frac{\pi}{2}} f(\sin x) d x\\ & 💝\int_{0}^{\frac{\pi}{2}} x(f(\sin x)+f(\cos x)) d x=\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} f(\sin x) d x\\ & ✍\int \sin ^{n} x d x=-\frac{\cos x \sin ^{n-1} x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x \\ & ✍\int \cos ^{n} x d x=\frac{\sin x \cos ^{n-1} x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x\\ & ✍\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x\\ & ✍\int \frac{d x}{a \sin x+b \cos x}=\frac{1}{\sqrt{a^{2}+b^{2}}} \ln \left|\tan \frac{x+\arctan \frac{b}{a}}{2}\right|+C \end{aligned} 💝02πf(sinx)dx=02πf(cosx)dx💝0πf(sinx)dx=202πf(sinx)dx💝0πxf(sinx)dx=2π0πf(sinx)dx💝0πxf(sinx)dx=π02πf(sinx)dx💝02πx(f(sinx)+f(cosx))dx=2π02πf(sinx)dxsinnxdx=ncosxsinn1x+nn1sinn2xdxcosnxdx=nsinxcosn1x+nn1cosn2xdxtannxdx=n1tann1xtann2xdxasinx+bcosxdx=a2+b2 1lntan2x+arctanab+C

03 华理士公式

华理士公式(点火公式)
∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = ( n − 1 ) ! ! n ! ! H   { ( n − 1 ) ! ! n ! ! n 为 奇 数 , 点 火 失 败 , H 取 1 ( n − 1 ) ! ! n ! ! ⋅ π 2 n 为 偶 数 , 点 火 成 功 , H 取 π 2 ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { ( n − 1 ) ! ! n ! ! n 为 奇 数 ( n − 1 ) ! ! n ! ! ⋅ π 2 n 为 偶 数 \begin{aligned} & \int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x= \frac{(n-1) ! !}{n ! !} H\ \left\{\begin{array}{cc}\frac{(n-1) ! !}{n ! !} & n 为奇数,点火失败,H取1 \\ \frac{(n-1) ! !}{n ! !} \cdot \frac{\pi}{2} & n 为偶数,点火成功,H取\frac{\pi}{2} \end{array}\right.\\ & \int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\left\{\begin{array}{cc}\frac{(n-1) ! !}{n ! !} & n 为奇数 \\ \frac{(n-1) ! !}{n ! !} \cdot \frac{\pi}{2} & n 为偶数\end{array}\right. \end{aligned} 02πsinnxdx=02πcosnxdx=n!!(n1)!!H {n!!(n1)!!n!!(n1)!!2πnH1nH2π02πsinnxdx=02πcosnxdx={n!!(n1)!!n!!(n1)!!2πnn

04 周期函数的积分公式

∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x = ∫ − T / 2 T / 2 f ( x ) d x \int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x=\int_{-T / 2}^{T / 2} f(x) d x aa+Tf(x)dx=0Tf(x)dx=T/2T/2f(x)dx

05 柯西不等式-积分形式

( ∫ a b f ( x ) g ( x ) d x ) 2 ⩽ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x \left(\int_{a}^{b} f(x) g(x) \mathrm{d} x\right)^{2} \leqslant \int_{a}^{b} f^{2}(x) \mathrm{d} x \int_{a}^{b} g^{2}(x) \mathrm{d} x (abf(x)g(x)dx)2abf2(x)dxabg2(x)dx

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值