快速幂和快速幂取模

首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:

  假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时,a^11=a^(2^0+2^1+2^3)

  11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a^(2^0)*a^(2^1)*a^(2^3) ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子....不急,下面会有详细解释。
  由于是二进制,很自然地想到用位运算这个强大的工具: &  和 >> ,&运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。>>运算比较单纯,二进制去掉最后一位,不多说了,先放代码再解释。
int poww(int a,int b){
    int ans=1,base=a;
    while(b!=0){
        if(b&1!=0)
          ans*=base;
        base*=base;
        b>>=1;
  }
    return ans;
}

代码很短,死记也可行,但最好还是理解一下吧,其实也很好理解,以b==11为例,b=>1011,二进制从右向左算,但乘出来的顺序是 a^(2^0) * a^(2^1)  * a^(2^3),是从左向右的。我们不断的让base*=base目的即是累乘,以便随时对ans做出贡献。

  其中要理解base*=base这一步,看:::base*base==base^2,下一步再乘,就是base^2*base^2==base^4,然后同理  base^4 * base4 = base^8 ,,,,, see?是不是做到了base-->base^2-->base^4-->base^8-->base^16-->base^32.......指数正是 2^i 啊,再看上面的例子,a¹¹ =  a^(2^0) * a^(2^1) * a^(2^3),这三项是不是完美解决了,,嗯,快速幂就是这样。

  顺便啰嗦一句,由于指数函数是爆炸增长的函数,所以很有可能会爆掉int的范围,根据题意决定是用 long long啊还是unsigned int啊还是mod某个数啊自己看着办。

  还有,矩阵快速幂的求法唯一的区别就是*换成矩阵中的乘法,写个函数代换嘛,思想一毛一样。

快速幂取模:(万变不离其中!!!)

 

int power(int a, int b, int mod)
{
    int ans = 1, base = a%mod;
    while (b!=0)
    {
        if (b & 1!=0)
            ans = (ans*base)%mod;
        base=(base*base)%mod;
        b >>= 1;
    }
    return res;
}

 

 

 

转载于:https://www.cnblogs.com/heyonghu/p/9747426.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值