机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

本文介绍了机器学习中的逻辑回归和Softmax Regression。逻辑回归主要适用于二分类问题,通过Sigmoid函数将线性模型转换为概率预测。Softmax Regression则是多分类问题的解决方案,它扩展了逻辑回归,适用于类别间不独立的情况。文章讲解了目标函数、梯度下降法及其优化,并探讨了何时选择Softmax Regression或多个逻辑回归。
摘要由CSDN通过智能技术生成

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld
技术交流QQ群:433250724,欢迎对算法、技术、应用感兴趣的同学加入。

前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中。事实上,除了单独使用,线性回归也是很多其他算法的组成部分。线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限;另外,线性回归的目标值可以是(,+),而有的时候,目标值的范围是[0,1](可以表示概率值),那么就不方便了。

逻辑回归可以说是最为常用的机器学习算法之一,最经典的场景就是计算广告中用于CTR预估,是很多广告系统的核心算法。

逻辑回归Logistic Regression

逻辑回归(LR),虽然叫回归,然是从目标函数来看,它是设计用来做分类的,经典的LR是用于二分类的情况的,也就是说只有0,1两类。

定义一个样本xiRm的类别是1的概率为:

P(yi=1|xi)=exp(wTxi)1+exp(wTxi)=11+exp(wTxi)

这就是sigmoid函数的形式,绘制出来是这样的形式:
这里写图片描述
图1

可以看到,取值范围是在(0,1)的,因此近似可以理解为一个概率的取值。在神经网络模型中,sigmoid函数是一种激励函数,其他常见的还有tanh函数,以及其他一些函数。(这些激励函数后面介绍神经网络模型的时候再展开)

记sigmoid函数为

h(xi)=P(yi=1|xi)=11+exp(wTxi)

给定一个数据集S,其中有N个样本,那么可以写出目标函数:最小化负对数似然函数:

minwL(w)=logi=1Nh(xi)yi1h(xi))1yi=i=1N[yilogh(xi)+(1yi)log(1h(xi))]=i=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值