机器学习——逻辑回归

   假设我们有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合的过程就称作回归。逻辑回归的主要思想是根据现有数据对分类边界线建立回归公式,以此分类。这里的“回归”源于最佳拟合,表示要找到最佳拟合参数。逻辑回归是基于条件概率的判别模型。

 推导过程:

        为了实现逻辑回归分类器,我们可以在每个特征上诚意一个回归系数,然后把所有的结果值相加,将这个总和带入到Sigmoid函数中,进而得到一个范围子【0,1】之间的数值。任意大于0.5的数据分为1类,小于0.5的分入0类。

 Sigmoid函数的输入记为Z,则

                                                 


则Sigmoid函数为


用一个概率表示一下 如果样本为1,h(z)的概率为0.3,则样本为0时,1-h(z)就是0.7

得到代价函数:

                                                

对指数函数对数化:


接着对L求偏导:

                                            


将三个结果相乘并化简: 

                               

梯度上升公式为

最后化简为

我们只需求出w的值,就可以确定回归线,即Z。

代码如下:

def loadDataSet():
    dataMat=[]  ##创建数据列表
    labelMat=[]  #创建标签列表
    fr=open('testSet.txt')   #打开文件
    for line in fr.readlines():    #逐行读取
        lineArr=line.strip().split()     #去回车,按空格分隔
        dataMat.append([1,float(lineArr[0]),float(lineArr[1])])#添加数据
        labelMat.append(int(lineArr[2]))#添加标签
    fr.close()#关闭文件
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

梯度上升算法

def gradAscent(dataMatIn,classLabels):
    dataMatrix=np.mat(dataMatIn)
    labelMat=np.mat(classLabels).transpose()
    m,n=np.shape(dataMatrix)
    alpha=0.001
    maxCycles=500
    weights=np.ones((n,1))
    for k in range (maxCycles):
        h=sigmoid(dataMatrix*weights) # Z()=w^T*x  直线
        err=(labelMat-h)
        weights=weights+alpha*dataMatrix.transpose()*err
    return weights

画出决策边界

def plotBestFit(weights):
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = np.shape(dataArr)[0]
    xcord1=[]; ycord1=[]
    xcord2=[];ycord2=[]
    for i in range (n):
        if int(labelMat[i])==1 :
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else :
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30, c='red' ,marker = 's')
    ax.scatter(xcord2,ycord2,s=30,c='green' )
    x=np.arange(-3.0,3.0,0.1)        #(start,end,步长) 
    y=(-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x,y)
    plt.xlabel('X1');
    plt.ylabel('X2');
    plt.show()




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
居民出行选择行为可以被视为一个分类问题,其中特征包括年龄、性别、收入、出行目的、出行时间、出行距离等。在这里,我们可以使用逻辑回归模型进行预测。 我们可以先收集一些相关数据,然后将其分为训练集和测试集。接着,我们可以使用 Python 中的 Scikit-learn 库来构建逻辑回归模型。具体步骤如下: 1. 首先,我们需要导入所需的库: ```python import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score ``` 2. 然后,我们需要加载数据并进行预处理: ```python data = pd.read_csv('travel_behavior.csv') data = data.dropna() # 删除缺失值 data = pd.get_dummies(data, columns=['purpose', 'time']) # 将分类变量转换为哑变量 X = data.drop(['choice'], axis=1) y = data['choice'] ``` 这里,我们使用了 Pandas 库加载数据,并删除了任何包含缺失值的行。然后,我们使用 `get_dummies()` 函数将分类变量转换为哑变量。最后,我们将特征(`X`)和标签(`y`)分开。 3. 接着,我们将数据分为训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) ``` 这里,我们使用了 `train_test_split()` 函数来将数据分为训练集和测试集。我们选择了 20% 的数据作为测试集,而其余的数据则用于训练模型。 4. 然后,我们可以使用逻辑回归模型进行训练: ```python model = LogisticRegression() model.fit(X_train, y_train) ``` 这里,我们使用了 Scikit-learn 库中的 `LogisticRegression()` 类来构建逻辑回归模型,并使用 `fit()` 方法将模型拟合到训练数据上。 5. 最后,我们可以使用测试集来评估模型的准确性: ```python y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` 这里,我们使用 `predict()` 方法来预测测试集中的标签,并使用 `accuracy_score()` 函数来计算模型的准确性。 通过以上步骤,我们就可以构建一个简单的逻辑回归模型,用于预测居民出行选择行为。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱缘之梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值