POJ 1845 Sumdiv

// Time 16ms, Memory 328K
#include<iostream>  
using namespace std;  
  
const int size=10000;  
const int mod=9901;  
  
__int64 sum(__int64 p,__int64 n);  //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod  
__int64 power(__int64 p,__int64 n);  //反复平方法求 (p^n)%mod  
  
int main(void)  
{  
    int A,B;  
    int p[size];//A的分解式,p[i]^n[i]  
    int n[size];  
  
    while(cin>>A>>B)  
    {  
        int i,k=0;  //p,n指针  
  
        /*常规做法:分解整数A (A为非质数)*/  
        for(i=2;i*i<=A;)   //根号法+递归法  
        {  
            if(A%i==0)  
            {  
                p[k]=i;  
                n[k]=0;  
                while(!(A%i))  
                {  
                    n[k]++;  
                    A/=i;  
                }  
                k++;  
            }  
            if(i==2)  //奇偶法  
                i++;  
            else  
                i+=2;  
        }  
        /*特殊判定:分解整数A (A为质数)*/  
        if(A!=1)  
        {  
            p[k]=A;  
            n[k++]=1;  
        }  
  
        int ans=1;  //约数和  
        for(i=0;i<k;i++)  
            ans=(ans*(sum(p[i],n[i]*B)%mod))%mod;  //n[i]*B可能会超过int,因此用__int64  
  
        cout<<ans<<endl;  
    }  
    return 0;  
}  
  
__int64 sum(__int64 p,__int64 n)  //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod  
{                          //奇数二分式 (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))  
    if(n==0)               //偶数二分式 (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2)  
        return 1;  
    if(n%2)  //n为奇数,  
        return (sum(p,n/2)*(1+power(p,n/2+1)))%mod;  
    else     //n为偶数  
        return (sum(p,n/2-1)*(1+power(p,n/2+1))+power(p,n/2))%mod;  
}  
  
__int64 power(__int64 p,__int64 n)  //反复平方法求(p^n)%mod  
{  
    __int64 sq=1;  
    while(n>0)  
    {  
        if(n%2)  
            sq=(sq*p)%mod;  
        n/=2;  
        p=p*p%mod;  
    }  
    return sq;  
}  

转载于:https://www.cnblogs.com/java20130726/archive/2013/05/19/3218245.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值