题意:求第k个与m互质的数。
分析:先求phi[m],区间[1, m]中有phi[m]个数与m互质。同样,在区间[ n*m +1, n*m +m ]中必然也有phi[m]个数与m互质,并且这phi[m]个数与[1 ~ m]的phi[m]个数是"一一对应"的。
证明:
设gcd(a + b, b) = p, p是a + b和b的公因子,那么p一定是a, b的公因子 (欧几里德。。)
若k与m互质,假设k+m与m不互质,且其最大公约数为r,那么k与m必有公约数r,矛盾。。
若k与m不互质,设其最大公约数为r,那么k+m与m必有公约数r,k+m与m不互质。 所以 “一一对应”。
int m,k,p,ans,cnt; bool b[1000005]; void euler1(int n){//Çó¦Õ(n) for(int i=2; i<= (int)sqrt( n*1.0 ); i++) if(n%i==0) { for(int j=i;j<=m;j+=i) b[j]=true; while(n%i==0) n/=i; } if(n>1) for(int j=n;j<=m;j+=n) b[j]=true; cnt=0; FOE(i,1,m) if(b[i]==false) cnt++; } int main(){ while(~scanf("%d%d",&m,&k)){ memset(b,false,sizeof b); euler1(m); p=(k-1)/cnt; k=(k-1)%cnt+1; cnt=0; FOE(i,1,m) if(b[i]==false) { cnt++; if(cnt==k) {ans=i;break;} } printf("%d\n",ans+p*m); } return 0; }