感知器算法例题ppt_感知器算法学习课件.ppt

W的训练过程: 例如:x1, x2, x3∈ω1 作 x1, x3的垂直线可得解区(如图) 假设起始权向量w1=0 ρk = 1 1. x1, x2, x3三个矢量相加得矢量2,垂直于矢量2的超平面H将x3错分. 2. x3与矢量2相加得矢量3,垂直于矢量3的超平面H1,将x1错分. 3.依上法得矢量4,垂直于矢量4做超平面, H2将x3错分 4. x3与矢量4相加得矢量5,矢量5在解区内,垂直于矢量5的超平面可以把 x1, x2, x3分成一类 。 ρk选择准则 ①???? 固定增量原则 ρk固定非负数 ② ??? 绝对修正规则 ρk> ③ 部分修正规则 ρk=λ 0<λ≤2 例题:有两类样本 ω1=(x1,x2)={(1,0,1),(0,1,1)} ω2=(x3,x4)={(1,1,0),(0,1,0)} 解:先求四个样本的增值模式 x1=(1,0,1,1) x2=(0,1,1,1) x3=(1,1,0,1) x4=(0,1,0,1) 假设初始权向量 w1=(1,1,1,1) ρk=1 第一次迭代: w1Tx1=(1,1,1,1) (1,0,1,1)T=3>0 所以不修正 w1Tx2=(1,1,1,1) (0,1,1,1)T=3>0 所以不修正 w1Tx3=(1,1,1,1) (1,1,0,1)T=3>0 所以修正w1 w2=w1-x3=(0,0,1,0) w2Tx4=(0,0,1,0)T (0,1,0,1) =0 所以修正w2 w3=w2-x4=(0,-1,1,-1) 第一次迭代后,权向量w3=(0,-1,1,-1),再进行第2,3,…次迭代 如下表(下面请大家自己进行第2次迭代) 直到在一个迭代过程中权向量相同,训练结束。 w6=w=(0,1,3,0) 判别函数g(x)= -x2+3x3 感知器算法只对线性可分样本有收敛的解,对非线性可分样本集会造成训练过程的振荡,这是它的缺点. 线性不可分样本集的分类解(取近似解) 对于线性可分的样本集,可以用上述方法解到正确分 类的权向量。当样本集线性不可分时,用上述方法求权 值时算法不收敛。如果我们把循环的权向量取平均值作 为待求的权向量,或就取其中之一为权向量,一般可以 解到较满意的近似结果。 例:在样本 ω1: X1 =(0,2) X3 =(2,0) X5 =(-1,-1) ω2: X2 =(1,1) X4 =(0,-2) X6 =(-2,0) 求权向量的近似解 解:此为线性不可分问题,利用感知器法求权向量 权向量产生循环(-1, 2, 0), (0, 2, 2), (-1, 1, 1), (-1, 1, 1) (-1, 1, 1), (0, 0, 0), (-1, 2, 0) 因此算法不收敛,我们可以取循环中任一权值,例如取 W=(0,2,2)T 则判别函数为: g(x)= 2x1+2x2 判别面方程为: g(x)= 2x1+2x2=0 所以x1+x2=0 由图看出判别面H把二类分开,但其中x2错分到ω1类, 而x1错分到ω2类,但大部分分类还是正确的。 练习:已知四个训练样本 w1={(0,0),(0,1)} w2={(1,0),(1,1)} 使用感知器固定增量法求判别函数 设w1=(1,1,1) ρk=1 * 1 感知器算法(Perceptron Approach) 任选一初始增广权矢量 用训练样本检验分类是否正确 对所有训练样本都正确分类? Yes END Yes No 对权值进行校正 No 感知器算法流程图 流程: (3)调整增广权矢量,规则是 -- 如果 和 ,则 -- 如果 和 ,则 -- 如果 和 , 或 和 ,则 (4)如果k < N,令k = k+1,返至⑵。如果k = N,检验判别函数 对 是否都能正确分类。若是,结束;若不是,令 k=1,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值