模板来自:https://www.cnblogs.com/Winniechen/p/9862745.html
题意:将数列a划分成k段,使得每段内部逆序对最少$(n<=40000,k<=10,a[i]<=n)$
dp式子比较显然,设$f[i][j]$为前$i$个数划分成$j$段的答案,$f[i][j]=min(f[k][j-1]+calc(k+1,i))$
决策单调性证明:
如果加入$i1,i2$之间的数,那么这段数和$v1$产生的逆序对数显然大于$v2$
接下来需要快速求出$calc(i,j)$的逆序对数
每次全部暴力加入树状数组的复杂度过高,因为$p$与$mid$没什么关系,可能相距很远,这样复杂度会达到$O(n^{2}klog(n))$,
这里的解决办法是用分治法做决策单调性,发现逆序对可以快速转移到相邻区间,考虑新加入或删除的数的逆序对贡献即可,每次更换区间只要不断移动左右端点维护这些数和逆序对即可
至于复杂度似乎不太好想...?每一层的每个位置据说只会被一个区间遍历...好像确实是这样
分治层数$log(n)$,树状数组维护$nlog(n)$,总共$k$次,总复杂度$nklog^{2}(n)$
#include<bits/stdc++.h> #define ll long long #define lbt(x) (x&-x) using namespace std; const int maxn=40009; int n,k; int a[maxn]; int f[maxn][11]; int t[maxn]; inline void add(int x,int d){ while(x<=n){ t[x]+=d; x+=lbt(x); } } inline int ask(int x){ int ans=0; while(x){ ans+=t[x]; x-=lbt(x); } return ans; } int sum,L,R; void upd(int l,int r){//莫队 while(L<l)add(a[L],-1),sum-=ask(a[L++]-1); while(L>l)add(a[--L],1),sum+=ask(a[L]-1); while(R<r)add(a[++R],1),sum+=ask(n)-ask(a[R]); while(R>r)add(a[R],-1),sum-=ask(n)-ask(a[R--]); } void solve(int j,int l,int r,int pl,int pr){ if(l>r)return; int mid=l+r>>1,pos; for(int i=min(mid-1,pr);i>=pl;i--){ upd(i+1,mid); if(f[i][j-1]+sum<f[mid][j])f[mid][j]=f[i][j-1]+sum,pos=i; } solve(j,l,mid-1,pl,pos);solve(j,mid+1,r,pos,pr); } //f[i][j]=min(f[i-1][k]+calc(k+1,j)) int main(){ scanf("%d%d",&n,&k); for(int i=1;i<=n;i++)scanf("%d",&a[i]); memset(f,0x3f,sizeof(f)); f[0][1]=0; for(int i=1;i<=n;i++){ f[i][1]=f[i-1][1]+ask(n)-ask(a[i]),add(a[i],1); } sum=f[n][1];R=n,L=1; for(int j=2;j<=k;j++)solve(j,1,n,1,n); printf("%d",f[n][k]); }