SVD的基础详解

目录 ?

1️⃣ 简单说一下特征值、特征向量与特征分解
   I. 特征值、特征向量与特征分解
   II. 几何意义
   III. 如何实现通过Matlab、Python实现
2️⃣详细解说SVD
   I. 几何意义
   I. 奇异值分解的推导过程
   I. SVD算例
   I. 如何通过Matlab和Python
3️⃣应用举例
   I. 特征值、特征向量与特征分解
4️⃣特征分解、奇异值分解的区别
   I. 特征分解、奇异值分解的区别

简单说一下特征值、特征向量与特征分解

特征值、特征向量与特征分解

Theory:
对于一个正阵\(M\),满足如下:
\[Mx=\lambda x \]
其中\(\lambda\)被成为特征值,满足\(||M-\lambda E||=0\)再有\((M-\lambda E)x=0\),可计算其特征向量。
如果有了特征值和特征向量后呢,则可以将矩阵\(M\)用特征分解:
\[ M=W\sum W^{-1}\]
\(W={w_1,w_2,...,w_n}\)分别是特征值\(\lambda_1,\lambda_2,...,\lambda_n\)对应的特征向量构成的方阵

几何意义

对应矩阵M,其对应的线性变化
\[Mx = x'\]
上面这个式子,\(Mx,x'\)是一个向量,\(x,x'\)可能是不共线的(如图(b)),如果向量\(Mx,x'\)满足\(Mx=x'=\lambda x\),则如图(b),这说明了这个变换就是对向量x做一个拉伸或者压缩。
963294-20190302130244361-454592431.png

如何实现通过Matlab、Python实现

数学推导:
\[ Mx = \lambda x\]
\[ Mx-\lambda x=(M-\lambda E)x=0\]
齐次线性方程组有非零解,则\[||M-\lambda E||=0\]可求得特征向量
再带回,可得特征向量。
Matlab:

d = eig(M) % 求取矩阵M的特征值,向量形式存储
[V,D] = eig(M) % 计算M的特征值对角阵D和特征向量V,使得MV = VD成立
[V,D] = eig(M,'nobalance')   %当矩阵M中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用

Python
numpy科学计算库提供相应的方法

import numpy as np

x = np.diag((1,2,3)) # 这是你想要求取特征值的数组
a,b = numpy.linalg.elg(x) # 特征值赋值给a,对应的特征向量赋值给b

详细解说SVD

SVD的英文全称: Singular Value Decomposition,中文名字:奇异值分解

几何意义

图来源
以二维空间为例
963294-20190302130316961-962587537.png
963294-20190302130330350-684549907.png

几何意义就是把一个单位正交的网格,转换为另外一个单位正交的网格
假如选取了一组单位正交基{\(\vec{v}_1,\vec{v}_2\)},刚好矩阵M的线性变化(\(M\vec{v}_1\),\(M\vec{v}_2\))也正交,用\(\vec{u}_1,\vec{u}_2\)分别表示\(M\vec{v}_1\),\(M\vec{v}_2\)的单位向量,用\(\lambda_1,\lambda_2\)表示\(M\vec{v}_1\),\(M\vec{v}_2\)的长度,描述网格在这些特定方向上的拉伸量,也被称作矩阵M的奇异值。
\(M\vec{v}_1 =\lambda_1\vec{u}_1\)
\(M\vec{v}_2 =\lambda_2\vec{u}_2\)
对任意给定的向量\(\vec{x}\),则有
\[ \mathbf{x}=\left(\mathbf{v}_{1} \cdot \mathbf{x}\right) \mathbf{v}_{1}+\left(\mathbf{v}_{2} \cdot \mathbf{x}\right) \mathbf{v}_{2} \]
再将M的线性变换
\[ \begin{aligned} M \mathbf{x} &=\left(\mathbf{v}_{1} \cdot \mathbf{x}\right) M \mathbf{N}_{1}+\left(\mathbf{v}_{2} \cdot \mathbf{x}\right) M \mathbf{v}_{2} \\ M \mathbf{x} &=\left(\mathbf{v}_{1} \cdot \mathbf{x}\right) \sigma_{1} \mathbf{u}_{1}+\left(\mathbf{v}_{2} \cdot \mathbf{x}\right) \sigma_{2} \mathbf{u}_{2} \end{aligned} \]
\[ \begin{array}{c}{M \mathbf{x}=\mathbf{u}_{1} \sigma_{1} \mathbf{v}_{1}^{\top} \mathbf{x}+\mathbf{u}_{2} \sigma_{2} \mathbf{v}_{2}^{\top} \mathbf{x}} \\ {M=\mathbf{u}_{1} \sigma_{1} \mathbf{v}_{1}^{\top}+\mathbf{u}_{2} \sigma_{2} \mathbf{v}_{2}^{\top}}\end{array} \]
so
\[ M=U \Sigma V^{T} \]

奇异值分解的推导过程

\(u=(u_1,u_2,...,u_m)\)
\(v=(v_1,v_2,...,v_n)\)
\(u,v\)都是空间的基,是正交矩阵 \(u^Tu=E,v^Tv = E\)
963294-20190302130351823-2067844008.png

任何一个矩阵\(M_{m*n}\)\(rank(M)=k\),一定存在SVD,换句话说,M可以将一组单位正交基映射到另一组单位正交基。答案是肯定的
证明如下:
再n为空间中,有一组单位正交基{\(\vec{v}_1,\vec{v}_2,...,\vec{v}_n\)},线性变化作用以后
\[ {M\vec{v}_1,M\vec{v}_2,...,M\vec{v}_n} \]
也是正交的,则有
\[(M\vec{v}_i,M\vec{v}_j) = (M\vec{x}_i)^TM\vec{v}_j=\vec{v}_i^TM^TM\vec{v}_j=0 \]
注意喔,\(M^TM\)是矩阵喔,则会有\(M^TM\vec{v}_j=\lambda \vec{v}_j\)
接下去,
\[ \begin{aligned} v_{i}^{T} M^{T} \mathrm{M} v_{j}=& v_{i}^{T} \lambda_{j} v_{j} \\ &=\lambda_{j} v_{i}^{T} v_{j} \\ &=\lambda_{j} v_{i}\dot v_{j}=0 \end{aligned} \]
上述就证明了是有的:任何一个矩阵,都可以将一组单位正交基转换成另外一组正交基。
\(i=j\),\(<M\vec{v}_i,M \vec{v}_i>=\lambda_i \vec{v}_i \vec{v}_i =\lambda_i\)
进行一些单位化,记\(u_i=\frac{A\vec{v}_i}{|M\vec{v}_i|}=\frac{1}{\sqrt{\lambda_i}}M\vec{v}_i\)

\[ A v_{i}=\sigma_{i} u_{i}, \sigma_{i}(\operatorname{奇异值})=\sqrt{\lambda_{i}}, 0 \leq i \leq \mathrm{k}, \mathrm{k}=\operatorname{Rank}(\mathrm{A}) \]
\(k < i <= m\)时,对\(u1,u2,...,uk\)进行扩展\(u(k+1),...,um\),使得\(u1,u2,...,um\)\(m\)维空间中的一组正交基.也可对\(\vec{v}_1,\vec{v}_2,...,\vec{v}_k\)进行扩展,扩展的\(\vec{v}_{k+1},...,\vec{v}_{n}\)存在零子空间里面。
\[ M\left[ \begin{array}{lll}{\vec{v}_{1}} & {\cdots} & {\vec{v}_{k}}\end{array}\right| \vec{v}_{k+1} \quad \cdots \quad \vec{v}_{m} ]= \left[ \begin{array}{c}{\vec{u}_{1}^{T}} \\ {\vdots} \\ {\frac{\vec{u}_{k}^{T}}{\vec{u}_{k+1}}} \\ {\vdots} \\ {\vec{u}_{n}^{T}}\end{array}\right] \left[ \begin{array}{ccc|c}\sigma_{1} & & 0 & 0\\ & {\ddots} & \sigma_{k} & 0 \\ \hline 0 & & 0 &0\end{array}\right] \]
\[ M=\left[ \begin{array}{lll}{\vec{u}_{1}} & {\cdots} & {\vec{u}_{k}}\end{array}\right] \left [ \begin{array}{ccc}\sigma_{1} & & \\ & {\ddots} & \\ & & {\sigma_{k}}\end{array}\right] \left[ \begin{array}{c}{\vec{v}_{1}^{T}} \\ {\vdots} \\ {\vec{v}_{k}^{T}}\end{array}\right]+ \left[ \begin{array}{ccc}{\vec{u}_{k+1}} & {\cdots} & {\vec{u}_{m}}\end{array}\right] \left[\begin{array}{c} 0 \end{array} \right] \left[ \begin{array}{c}{\vec{v}_{k+1}^{T}} \\ {\vdots} \\ {\vec{v}_{n}^{T}}\end{array}\right] \]

SVD算例

U:\(AA^T\)的特征值和特征向量,用单位化的特征向量构成 U
V: \(A^TA\) 的特征值和特征向量,用单位化的特征向量构成 V
$\sum_{mn} $ :将$ AA^{T} $或者 \(A^{T}A\) 的特征值求平方根,然后构成 Σ
以矩阵\(A = \left[\begin{matrix} 1 & 1\\1 &1\\ 0 &0\\\end{matrix} \right]\)
第一步 U ,下面是一种计算方法
对矩阵\[ A A^{T}=\left[ \begin{array}{lll}{2} & {2} & {0} \\ {2} & {2} & {0} \\ {0} & {0} & {0}\end{array}\right] \]特征分解,
特征是4,0,0
特征向量是$
\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^{T},\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^{T},[0,0,1]^{T}$,可得到
\[ U=\left[ \begin{array}{ccc}{\frac{1}{\sqrt{2}}} & {-\frac{1}{\sqrt{2}}} & {0} \\ {\frac{1}{\sqrt{2}}} & {\frac{1}{\sqrt{2}}} & {0} \\ {0} & {0} & {1}\end{array}\right] \]

第二步
计算矩阵\(A^TA\)的特征分解,可得
特征值4,0,
\[ V=\left[ \begin{array}{cc}{\frac{1}{\sqrt{2}}} & {-\frac{1}{\sqrt{2}}} \\ {\frac{1}{\sqrt{2}}} & {\frac{1}{\sqrt{2}}}\end{array}\right] \]
第三步
计算\(\sum_{mn}\)
\[ \Sigma=\left[ \begin{array}{ll}{2} & {0} \\ {0} & {0} \\ {0} & {0}\end{array}\right] \]
最后,
\[ A=U \Sigma V^{T}=\left[ \begin{array}{ccc}{\frac{1}{\sqrt{2}}} & {-\frac{1}{\sqrt{2}}} & {0} \\ {\frac{1}{\sqrt{2}}} & {\frac{1}{\sqrt{2}}} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[ \begin{array}{ll}{2} & {0} \\ {0} & {0} \\ {0} & {0}\end{array}\right] \left[ \begin{array}{cc}{\frac{1}{\sqrt{2}}} & {-\frac{1}{\sqrt{2}}} \\ {\frac{1}{\sqrt{2}}} & {\frac{1}{\sqrt{2}}}\end{array}\right]^{T}=\left[ \begin{array}{cc}{1} & {1} \\ {1} & {1} \\ {0} & {0}\end{array}\right] \]

如何通过Matlab和Python

Matlab:

s = svd(A)
[U,S,V] = svd(A)
[U,S,V] = svd(A,'econ')
[U,S,V] = svd(A,0)
input: A 矩阵
output:
        s:奇异值,以列向量形式返回。奇异值是以降序顺序列出的非负实数
        S:
        U:左奇异向量,以矩阵的列形式返回。
        V:奇异值,以对角矩阵形式返回。S 的对角元素是以降序排列的非负奇异值。
        右奇异向量,以矩阵的列形式返回。

Python

import numpy as np
M = np.array([ [1,1,2],[0,0,1]])
U,S,V  = np.linalg.svd(M)

应用举例

## 应用
2.1 信息检索
2.2 推荐系统
2.3 基于协同过滤的推荐系统
2.4 图像压缩

特征值分解和奇异值分解的区别

  1. 特征值分解只能是方阵,而奇异值分解是矩阵就可以
  2. 特征值分解只考虑了对矩阵缩放效果,奇异值分解对矩阵有选择、收缩、投影的效果
    963294-20190302130414644-1695667060.png963294-20190302130422747-74369657.png963294-20190302130426759-1554449396.png

转载于:https://www.cnblogs.com/xiemaycherry/p/10460464.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值