N皇后问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3860 Accepted Submission(s): 1801
Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1 8 5 0
Sample Output
1 92 10
算法入门经典有讲=。=
#include<cstdio>
#include<cstring>
int board[12];
int sum[12]={0};
bool used[3][20];
int n,ans;
void dfs(int cur)
{
int i;
if(cur==n)
ans++;
else
{
for(i=0;i<n;i++)
{
if(!used[0][i]&&!used[1][cur+i]&&!used[2][cur-i+n])
{
board[cur]=i;
used[0][i]=used[1][cur+i]=used[2][cur-i+n]=1;
dfs(cur+1);
used[0][i]=used[1][cur+i]=used[2][cur-i+n]=0;
}
}
}
}
int main()
{
while(scanf("%d",&n),n)
{
memset(used,0,sizeof(used));
ans=0;
if(sum[n]!=0)
printf("%d\n",sum[n]);
else
{
dfs(0);
printf("%d\n",ans);
sum[n]=ans;
}
}
return 0;
}