N皇后问题(Go Question)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17819 Accepted Submission(s): 8080
Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1 8 5 0
Sample Output
1 92 10
Author
cgf
Source
Recommend
题解:见注释
提示:想要知道摆放的位置,去掉注释部分即可
代码(打表+DFS):
#include<cstdio>
#include<cstring>
#define MYDD 16
int n,m,ans;
int row[MYDD],map[MYDD],ANS[MYDD];
void DFS(int x) {// x 代表当前行
int flag;
if(x==m+1) {
ans++;
return ;
}
for(int j=1; j<=m; j++) {
if(!row[j]) {
flag=1;
map[x]=j;//在 x 行 j 行摆放第 j 个皇后
for(int k=1; k<x; k++) {
if(map[x]-x==map[k]-k||map[x]+x==map[k]+k) {//对角线
flag=0;
break;
}
}
if(flag) {//递归回溯
row[j]=1;
DFS(x+1);
row[j]=0;
}
}
}
}
void init_king() {//结果打表,防止超时
for(int j=1; j<=10; j++) {
ans=0;
m=j;
DFS(1);
ANS[j]=ans;
}
}
int main() {
init_king();
while(scanf("%d",&m)&&m) {
printf("%d\n",ANS[m]);
}
return 0;
}
代码(递归方法超时):
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define MYDD 1103
using namespace std;
int ANS;// > 20 的数据量太大
int WQS[20];//标记皇后的摆放状态
void PRINTF_H(int n) {//输出一个解,打印坐标
static int count=1;
int i;
printf("第 %d 个解:",count);
for(i=1; i<=n; i++)
printf("(%d,%d) ",i,WQS[i]);
printf("\n");
count++;
}
int PLACE(int k,int j) { //测试 k,j 位置能否摆放皇后
int i=1;
while(i<k) {
if((WQS[i]==j)||(abs(WQS[i]-j)==abs(k-i)))
//产生冲突: 同列冲突或者两条对角线冲突
return 0;
i++;
}
return 1;
}
void QUEEN(int k,int n) {//开始放置 1~n 皇后
if(k>n) {
/******PRINTF_H(n);************/
//去除注释就输出详细解,即摆放位置
ANS++;
} else {
for(int j=1; j<=n; j++) {
if(PLACE(k,j)) {
WQS[k]=j;
QUEEN(k+1,n);
}
}
}
}
int main() {
int N;
while(scanf("%d",&N)&&N) {
ANS=0;
QUEEN(1,N);
printf("%d\n",ANS);
}
return 0;
}