转自:http://blog.csdn.net/watkinsong/article/details/7882443
方式一:
- function result = gaborKernel2d( lambda, theta, phi, gamma, bandwidth)
- % GABORKERNEL2D
- % Version: 2012/8/17 by watkins.song
- % Version: 1.0
- % Fills a (2N+1)*(2N+1) matrix with the values of a 2D Gabor function.
- % N is computed from SIGMA.
- %
- % LAMBDA - preferred wavelength (period of the cosine factor) [in pixels]
- % SIGMA - standard deviation of the Gaussian factor [in pixels]
- % THETA - preferred orientation [in radians]
- % PHI - phase offset [in radians] of the cosine factor
- % GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse)
- % BANDWIDTH - spatial frequency bandwidth at half response,
- % *******************************************************************
- %
- % BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH,
- % the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored.
- % The actual value of the parameter whose input value is 0 is computed inside the
- % function from the input vallues of BANDWIDTH and the other parameter.
- %
- % pi -1 x'^2+gamma^2*y'^2
- % G(x,y,theta,f) = --------------- *exp ([----{-------------------}])*cos(2*pi*f*x'+phi);
- % 2*sigma*sigma 2 sigma^2
- %
- %%% x' = x*cos(theta)+y*sin(theta);
- %%% y' = y*cos(theta)-x*sin(theta);
- %
- % Author: watkins.song
- % Email: watkins.song@gmail.com
- % calculation of the ratio sigma/lambda from BANDWIDTH
- % according to Kruizinga and Petkov, 1999 IEEE Trans on Image Processing 8 (10) p.1396
- % note that in Matlab log means ln
- slratio = (1/pi) * sqrt( (log(2)/2) ) * ( (2^bandwidth + 1) / (2^bandwidth - 1) );
- % calcuate sigma
- sigma = slratio * lambda;
- % compute the size of the 2n+1 x 2n+1 matrix to be filled with the values of a Gabor function
- % this size depends on sigma and gamma
- if (gamma <= 1 && gamma > 0)
- n = ceil(2.5*sigma/gamma);
- else
- n = ceil(2.5*sigma);
- end
- % creation of two (2n+1) x (2n+1) matrices x and y that contain the x- and y-coordinates of
- % a square 2D-mesh; the rows of x and the columns of y are copies of the vector -n:n
- [x,y] = meshgrid(-n:n);
- % change direction of y-axis (In Matlab the vertical axis corresponds to the row index
- % of a matrix. If the y-coordinates run from -n to n, the lowest value (-n) comes
- % in the top row of the matrix ycoords and the highest value (n) in the
- % lowest row. This is oposite to the customary rendering of values on the y-axis: lowest value
- % in the bottom, highest on the top. Therefore the y-axis is inverted:
- y = -y;
- % rotate x and y
- % xp and yp are the coordinates of a point in a coordinate system rotated by theta.
- % They are the main axes of the elipse of the Gaussian factor of the Gabor function.
- % The wave vector of the Gabor function is along the xp axis.
- xp = x * cos(theta) + y * sin(theta);
- yp = -x * sin(theta) + y * cos(theta);
- % precompute coefficients gamma2=gamma*gamma, b=1/(2*sigma*sigma) and spacial frequency
- % f = 2*pi/lambda to prevent multiple evaluations
- gamma2 = gamma*gamma;
- b = 1 / (2*sigma*sigma);
- a = b / pi;
- f = 2*pi/lambda;
- % filling (2n+1) x (2n+1) matrix result with the values of a 2D Gabor function
- result = a*exp(-b*(xp.*xp + gamma2*(yp.*yp))) .* cos(f*xp + phi);
- %%%%%%%% NORMALIZATION %%%%%%%%%%%%%%%%%%%%
- % NORMALIZATION of positive and negative values to ensure that the integral of the kernel is 0.
- % This is needed when phi is different from pi/2.
- ppos = find(result > 0); %pointer list to indices of elements of result which are positive
- pneg = find(result < 0); %pointer list to indices of elements of result which are negative
- pos = sum(result(ppos)); % sum of the positive elements of result
- neg = abs(sum(result(pneg))); % abs value of sum of the negative elements of result
- meansum = (pos+neg)/2;
- if (meansum > 0)
- pos = pos / meansum; % normalization coefficient for negative values of result
- neg = neg / meansum; % normalization coefficient for psoitive values of result
- end
- result(pneg) = pos*result(pneg);
- result(ppos) = neg*result(ppos);
- end
方式二:
- function [Efilter, Ofilter, gb] = gaborKernel2d_evenodd( lambda, theta, kx, ky)
- %GABORKERNEL2D_EVENODD Summary of this function goes here
- % Usage:
- % gb = spatialgabor(im, wavelength, angle, kx, ky, showfilter)
- % Version: 2012/8/17 by watkins.song
- % Version: 1.0
- %
- % Arguments:
- % im - Image to be processed.
- % wavelength - Wavelength in pixels of Gabor filter to construct
- % angle - Angle of filter in degrees. An angle of 0 gives a
- % filter that responds to vertical features.
- % kx, ky - Scale factors specifying the filter sigma relative
- % to the wavelength of the filter. This is done so
- % that the shapes of the filters are invariant to the
- % scale. kx controls the sigma in the x direction
- % which is along the filter, and hence controls the
- % bandwidth of the filter. ky controls the sigma
- % across the filter and hence controls the
- % orientational selectivity of the filter. A value of
- % 0.5 for both kx and ky is a good starting point.
- % % lambda = 3;
- % theta = 90;
- % kx = 0.5;
- % ky = 0.5;
- %
- %
- % Author: watkins.song
- % Email: watkins.song@gmail.com
- % Construct even and odd Gabor filters
- sigmax = lambda*kx;
- sigmay = lambda*ky;
- sze = round(3*max(sigmax,sigmay));
- [x,y] = meshgrid(-sze:sze);
- evenFilter = exp(-(x.^2/sigmax^2 + y.^2/sigmay^2)/2).*cos(2*pi*(1/lambda)*x);
- % the imaginary part of the gabor filter
- oddFilter = exp(-(x.^2/sigmax^2 + y.^2/sigmay^2)/2).*sin(2*pi*(1/lambda)*x);
- evenFilter = imrotate(evenFilter, theta, 'bilinear','crop');
- oddFilter = imrotate(oddFilter, theta, 'bilinear','crop');
- gb = evenFilter;
- Efilter = evenFilter;
- Ofilter = oddFilter;
- end
方式三:
- function gb = gaborKernel2d_gaborfilter( lambda, theta, phi, gamma, bw)
- %GABORKERNEL2D_GABORFILTER Summary of this function goes here
- % Version: 2012/8/17 by watkins.song
- % Version: 1.0
- %
- % LAMBDA - preferred wavelength (period of the cosine factor) [in pixels]
- % SIGMA - standard deviation of the Gaussian factor [in pixels]
- % THETA - preferred orientation [in radians]
- % PHI - phase offset [in radians] of the cosine factor
- % GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse)
- % BANDWIDTH - spatial frequency bandwidth at half response,
- % *******************************************************************
- %
- % BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH,
- % the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored.
- % The actual value of the parameter whose input value is 0 is computed inside the
- % function from the input vallues of BANDWIDTH and the other
- % parameter.
- % -1 x'^2 + y'^2
- %%% G(x,y,theta,f) = exp ([----{-----------------})*cos(2*pi*f*x'+phi);
- % 2 sigma*sigma
- %%% x' = x*cos(theta)+y*sin(theta);
- %%% y' = y*cos(theta)-x*sin(theta);
- %
- % Author: watkins.song
- % Email: watkins.song@gmail.com
- % bw = bandwidth, (1)
- % gamma = aspect ratio, (0.5)
- % psi = phase shift, (0)
- % lambda= wave length, (>=2)
- % theta = angle in rad, [0 pi)
- sigma = lambda/pi*sqrt(log(2)/2)*(2^bw+1)/(2^bw-1);
- sigma_x = sigma;
- sigma_y = sigma/gamma;
- sz=fix(8*max(sigma_y,sigma_x));
- if mod(sz,2)==0
- sz=sz+1;
- end
- % alternatively, use a fixed size
- % sz = 60;
- [x y]=meshgrid(-fix(sz/2):fix(sz/2),fix(sz/2):-1:fix(-sz/2));
- % x (right +)
- % y (up +)
- % Rotation
- x_theta = x*cos(theta)+y*sin(theta);
- y_theta = -x*sin(theta)+y*cos(theta);
- gb=exp(-0.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+phi);
- end
方式四:
- function gb = gaborKernel2d_wiki( lambda, theta, phi, gamma, bandwidth)
- % GABORKERNEL2D_WIKI 改写的来自wiki的gabor函数
- % Version: 2012/8/17 by watkins.song
- % Version: 1.0
- %
- % LAMBDA - preferred wavelength (period of the cosine factor) [in pixels]
- % SIGMA - standard deviation of the Gaussian factor [in pixels]
- % THETA - preferred orientation [in radians]
- % PHI - phase offset [in radians] of the cosine factor
- % GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse)
- % BANDWIDTH - spatial frequency bandwidth at half response,
- % *******************************************************************
- %
- % BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH,
- % the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored.
- % The actual value of the parameter whose input value is 0 is computed inside the
- % function from the input vallues of BANDWIDTH and the other
- % parameter.
- % -1 x'^2 + y'^2
- %%% G(x,y,theta,f) = exp ([----{-----------------})*cos(2*pi*f*x'+phi);
- % 2 sigma*sigma
- %%% x' = x*cos(theta)+y*sin(theta);
- %%% y' = y*cos(theta)-x*sin(theta);
- %
- % Author: watkins.song
- % Email: watkins.song@gmail.com
- % calculation of the ratio sigma/lambda from BANDWIDTH
- % according to Kruizinga and Petkov, 1999 IEEE Trans on Image Processing 8 (10) p.1396
- % note that in Matlab log means ln
- slratio = (1/pi) * sqrt( (log(2)/2) ) * ( (2^bandwidth + 1) / (2^bandwidth - 1) );
- % calcuate sigma
- sigma = slratio * lambda;
- sigma_x = sigma;
- sigma_y = sigma/gamma;
- % Bounding box
- nstds = 4;
- xmax = max(abs(nstds*sigma_x*cos(theta)),abs(nstds*sigma_y*sin(theta)));
- xmax = ceil(max(1,xmax));
- ymax = max(abs(nstds*sigma_x*sin(theta)),abs(nstds*sigma_y*cos(theta)));
- ymax = ceil(max(1,ymax));
- xmin = -xmax; ymin = -ymax;
- [x,y] = meshgrid(xmin:xmax,ymin:ymax);
- % Rotation
- x_theta = x*cos(theta) + y*sin(theta);
- y_theta = -x*sin(theta) + y*cos(theta);
- % Gabor Function
- gb= exp(-.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+phi);
- end
方式五:
- function [GaborReal, GaborImg] = gaborKernel_matlab( GaborH, GaborW, U, V, sigma)
- %GABORKERNEL_MATLAB generate very beautiful gabor filter
- % Version: 2012/8/17 by watkins.song
- % Version: 1.0
- % 用以生成 Gabor
- % GaborReal: 核实部 GaborImg: 虚部
- % GaborH,GaborW: Gabor窗口 高宽.
- % U,V: 方向 大小
- % ||Ku,v||^2
- % G(Z) = ---------------- exp(-||Ku,v||^2 * Z^2)/(2*sigma*sigma)(exp(i*Ku,v*Z)-exp(-sigma*sigma/2))
- % sigma*sigma
- %
- % 利用另外一个gabor函数来生成gabor filter, 通过u,v表示方向和尺度.
- % 这里的滤波器模板的大小是不变的,变化的只有滤波器的波长和方向
- % v: 代表波长
- % u: 代表方向
- % 缺省输入前2个参数,后面参数 Kmax=2.5*pi/2, f=sqrt(2), sigma=1.5*pi;
- % GaborH, GaborW, Gabor模板大小
- % U,方向因子{0,1,2,3,4,5,6,7}
- % V,大小因子{0,1,2,3,4}
- % Author: watkins.song
- % Email: watkins.song@gmail.com
- HarfH = fix(GaborH/2);
- HarfW = fix(GaborW/2);
- Qu = pi*U/8;
- sqsigma = sigma*sigma;
- Kv = 2.5*pi*(2^(-(V+2)/2));
- %Kv = Kmax/(f^V);
- postmean = exp(-sqsigma/2);
- for j = -HarfH : HarfH
- for i = -HarfW : HarfW
- tmp1 = exp(-(Kv*Kv*(j*j+i*i)/(2*sqsigma)));
- tmp2 = cos(Kv*cos(Qu)*i+Kv*sin(Qu)*j) - postmean;
- %tmp3 = sin(Kv*cos(Qu)*i+Kv*sin(Qu)*j) - exp(-sqsigma/2);
- tmp3 = sin(Kv*cos(Qu)*i+Kv*sin(Qu)*j);
- GaborReal(j+HarfH+1, i+HarfW+1) = Kv*Kv*tmp1*tmp2/sqsigma;
- GaborImg(j+HarfH+1, i+HarfW+1) = Kv*Kv*tmp1*tmp3/sqsigma;
- end
- end
- end
最后调用方式都一样:
-
- % 测试用程序
- theta = [0 pi/8 2*pi/8 3*pi/8 4*pi/8 5*pi/8 6*pi/8 7*pi/8];
- lambda = [4 6 8 10 12];
- phi = 0;
- gamma = 1;
- bw = 0.5;
- % 计算每个滤波器
- figure;
- for i = 1:5
- for j = 1:8
- gaborFilter=gaborKernel2d(lambda(i), theta(j), phi, gamma, bw);
- % 查看每一个滤波器
- %figure;
- %imshow(real(gaborFilter),[]);
- % 将所有的滤波器放到一张图像中查看,查看滤波器组
- subplot(5,8,(i-1)*8+j);
- imshow(real(gaborFilter),[]);
- end
- end