bzoj 1050: [HAOI2006]旅行comf【枚举+并查集】

m是5000,就想到了直接枚举比例
具体做法是是先把边按照边权从小到大排序,然后先枚举最小边权,再枚举最大边权,就是从最小边权里一个一个加进并查集里,每次查st是否联通,联通则退出,更新答案

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=5005;
int n,m,f[N],s,t;
double ax=30001,ay=1;
struct qwe
{
    int u,v;
    double w;
}a[N];
bool cmp(const qwe &a,const qwe &b)
{
    return a.w<b.w;
}
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
int zhao(int x)
{
    return x==f[x]?x:f[x]=zhao(f[x]);
}
int gcd(int a,int b)
{
    return !b?a:gcd(b,a%b);
}
int main()
{
    n=read(),m=read();
    for(int i=1;i<=m;i++)
        a[i].u=read(),a[i].v=read(),a[i].w=read();
    s=read(),t=read();
    sort(a+1,a+1+m,cmp);
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=n;j++)
            f[j]=j;
        for(int j=i;j<=m;j++)
        {
            int fu=zhao(a[j].u),fv=zhao(a[j].v);
            if(fu!=fv)
            {
                f[fu]=fv;
                if(zhao(s)==zhao(t))
                {//cerr<<a[j].w<<" "<<a[i].w<<endl;
                    if(ax/ay>a[j].w/a[i].w)
                        ax=a[j].w,ay=a[i].w;
                    break;
                }
            }
        }
    }
    if(ax==30001)
        puts("IMPOSSIBLE");
    else
    {
        int d=gcd(ax,ay);
        if(d==ay)
            printf("%d\n",(int)ax/d);
        else
            printf("%d/%d\n",(int)ax/d,(int)ay/d);
    }
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/9384256.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值