为何高于四次的方程没有根式解?

本文探讨了为什么四次以上的方程无法通过加减乘除和开方运算求解。从根的多项式、根的置换、群论和根的判别式等多个角度进行了深入阐述,揭示了四次以上方程根式解的非存在性,同时介绍了阿贝尔方程和伽罗瓦群的概念,展示了根式求解的条件与阿贝尔方程的关系。
摘要由CSDN通过智能技术生成

又见于知乎为何从五次方程开始就没有加减乘除开方的求根公式了?的回答。

可能不少人上学的时候都曾对这个问题感兴趣,至少我是一个。无意间在知乎上看到这个问题,又勾起了自己的兴趣,然后就上网、找书钻研了一番。我不是学数学的,我对问题的理解肯定有不准确的地方,所以这里算不上回答了这个问题,只是把自己的心得和大家分享一下。虽然里面有比较多的公式和概念,希望是比较好懂的,能对同样感兴趣的人有点启发。

先来一个简单的说明。整数通过加减乘除得到有理数,有理数没有填满实数轴,其中还有间隙,即存在着无理数。将有理数进行扩展,四项运算之外,再加上开方运算,经过这样计算后得到的数已拓展到了复平面,但其实并没有填满复平面,其中仍有间隙,而方程的根往往就落在这些间隙中,次数小于等于四次的方程的根只是恰好避开了这些间隙罢了。即便将方程的根再补上去,得到的数依然不能填满复平面,还存在着超越数(即圆周率\(\pi\),自然对数底\(e\)之类)。

接下来是正餐。

\(n\)次方程的一般形式为

\[x^n+c_1 x^{n-1}+c_2 x^{n-2}+\cdots+c_{n-1}x+c_n=0\]

要分析方程有没有根式解,先从根应该满足的关系入手。单独来看,每个根当然都应满足方程,而合起来看,根相互之间又有怎样的关系呢?设方程的根为\(x_1,x_2,\ldots,x_n\),则方程左边可分解为\((x-x_1)(x-x_2)\cdots(x-x_n)\),将其展开,再和方程的系数对比,可得:

\[-(x_1+x_2+\cdots+x_n)=c_1\] \[x_1 x_2+x_1 x_3+\cdots+x_{n-1} x_n=c_2\] \[\vdots\] \[(-1)^n x_1 x_2 \cdots x_n=c_n\]

这便是韦达定理,中学课本里介绍的只是二次方程时的情况。上面这些式子有一个共同的特点,\(x_1,x_2,\ldots,x_n\)在式中的位置均是等同的,任意交换两个根的位置,比如\(x_1,x_2\),并不会改变式子的形式,也即它们都是关于根的对称多项式,称为方程的基本对称多项式

方程的求解也可以理解为将上面\(n\)个基本对称多项式组成方程组,求解\(n\)个未知量\(x_1,x_2,\ldots,x_n\)的值的过程。以大家最熟悉的二次方程\(ax^2+bx+c=0\)为例,按韦达定理,有\(x_1+x_2 = -\frac b a,\; x_1 x_2 = \frac c a\),利用这两式构造

\[(x_1-x_2)^2 = (x_1+x_2)^2-4 x_1 x_2 = \left(-\frac b a\right)^2-4\frac c a = \frac{b^2-4ac}{a^2}\]

所以,\(x_1-x_2=\pm\frac{\sqrt{b^2-4ac}}a\),最后

\[x_1=\frac{(x_1+x_2)+(x_1-x_2)}2 = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\] \[x_2=\frac{(x_1+x_2)-(x_1-x_2)}2 = \frac{-b\mp\sqrt{b^2-4ac}}{2a}\]

可以证明,所有的根式求解都可理解为这样从已知多项式逐步化简,从而得到根的值的过程。在化简的过程中,除了多项式,还可能出现两个多项式相除形成的分式,这样的式子被称为有理式。如果分母为1或只是常数,那么这样的有理式其实就是多项式,所以从多项式扩展到有理式,就类似于从整数扩展到有理数。考虑到大家可能并不熟悉有理式,本文的例子中又没有出现,所以本文的讨论中只是谈多项式,不过读者应该知道,后文中的“多项式”,其实是可以替为“有理式”的,而且这样替换后的表述才是更完整的。

二次方程的根的表达式大家应该是比较熟悉的,这里写成这种形式,可以突出一点:如果考虑根的顺序,则方程的解的两种取值(不考虑重根的情形)。任取一种定为“原本的”,比如\(x_1^*=\frac{-b+\sqrt{b^2-4ac}}{2a}, x_2^*=\frac{-b-\sqrt{b^2-4ac}}{2a}\),则解的两种取值为\(x_1=x_1^*, x_2=x_2^*\)\(x_1=x_2^*, x_2=x_1^*\)。作为初始条件的\(x_1+x_2,x_1 x_2\)是对称多项式,在\(x_1,x_2\)的两种取值下,这两式的值是不变的,对这两式做四则运算,得到的多项式仍是单值的,而开方运算后得到的\(x_1-x_2\),它有两值\(x_1^*-x_2^*\)\(x_2^*-x_1^*\),从而最终结果\(x_1,x_2\)也是两值。\(x_1=x_2^*, x_2=x_1^*\)可以理解为以原\(x_2\)替换\(x_1\)、原\(x_1\)替换\(x_2\),而\(x_1=x_1^*, x_2=x_2^*\)也可理解为以原\(x_1\)替换\(x_1\)、原\(x_2\)替换\(x_2\),一种不改变值的替换。像这样按根的某种排列,作相应的替换,称为根的置换。二次方程有两个根,有两种根的置换,在两种置换下,多项式\(x_1+x_2\)是单值的,而\(x_1-x_2\)是两值的。

从二次方程推广到\(n\)次方程。\(n\)次方程的根的置换的总数即它们的全排列,即\(n\)的阶乘。这里不考虑有重根的的情形,因为有重根的方程总可以分解为若干个无重根的方程。如前所示,有\(n\)个值为方程系数的多项式作为已知量,这些多项式均为对称多项式,在全部置换的作用下,它们只有唯一的值。然后,利用这些已知的多项式进行化简。所谓化简,也就是设法构造出一些一次多项式,利用这些一次多项式组成方程组,就可以算出各个根的数值了。在降低多项式次数的过程中,开\(i\)次方后得到的多项式在全部置换的作用下有\(i\)种值,再开\(j\)次方,在全部置换的作用下有\(ij\)种值。由于最终的根有\(n!\)种取值,可以想见,我们最终需要得到在全部置换的作用下有\(n!\)种值一

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值