推导三次以及四次方程的求根公式

三次方程一般形:

         

         

带入上述方程

  

省略号标识x的一次以及0次各项.由此可见,含有x^2的项是互相抵消了,所以,任意一个三次方程都可以划归为这种形式:

     

于是有:

无论两数和u+v是怎样的,我们永远可以要求他们的积等于一个预先给定的值,因为如果给定了u+v=A, B=uv,B的值域可以归结为求抛物线方程的值域问题,或者空间坐标系中抛物线z=xy与x+y=A平面交线z坐标的问题,如下图:

B的任意值,在复数域上u都有对应的解.

我们可以要求

    

因为这样,可以使得上次不包括u和v的一次项.得到

    

由方程组容易构成以u^3和v^3为根的二次方程.

可以得到u^3和v^3是二次方程

    

根据二次方程求根公式:

所以:

 其中:

  \Delta =\frac{q^2}{4}+\frac{p^3}{27}=(\frac{q}{2})^2+(\frac{p}{3})^3

称为判别式!

即便所有根都为实数根,仍然可能遇到判别式为负数的情况,导致虚数被发现,逐渐收到重视!

三次方程必定有一个实数解,此公式给出的就是这个解,另外两个解可以通过长除法,将三次方程转换为二次方程,求二次方程的虚/实根.

四次方程求根公式推导过程

四次方程的一般式为:

 y^4+ay^3+by^2+cy+d=0

先进行变量替换

y=x-\frac{a}{4}

则化为下列一般首1的简化四次方程:

x^4+px^2+qx+r=0

法国数学家笛卡尔提出的方法:

x^4+px^2+qx+r=(x^2+kx+l)(x^2+nx+m)

分别比较等式两边各项系数,可以得出:

n=-k, l+m-k^2=p, k(m-l)=q, lm=r.

这个经典解法是十六世纪的意大利数学家得到的。

历史上,意大利数学家的这个成就发生了很大影响,在当时,新时代的科学还是第一次超过了旧时代的成就,整个中世纪只是处于了解古代著作的潮流影响之下,而终于在这里解决了古代所不能解决的的问题,这是在新的计算科学,解析几何,微分学以及积分学被发现的一百年的时候,这些新的计算学科最终地肯定了新的科学比旧的优越。

这让我想到了我们的情况,长久以来,包括现在,我们一直都陶醉在古老文明的坟头上不愿离去,所以不乏鼓吹孔老二,中医这样的骗子还在一直活跃。不愿意承认别人的优秀,这样的科研学习环境,是没有希望的。

  • 7
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值