推导三次以及四次方程的求根公式

本文探讨了三次方程的标准化形式,并通过代换法将其转换为可求解的形式。指出任意三次方程都可以通过特定变换抵消x^2项,转化为涉及u^3和v^3的二次方程。解这类方程的关键在于找到满足特定乘积条件的u和v,从而求得实数解。此外,文章还提到了解四次方程的笛卡尔方法和历史背景,强调了解析几何在数学发展中的重要地位,并批判了过于依赖古老文明而忽视现代科学成就的现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是根式可解的?

以一般的2次方程为例,其一般式为:

ax^2+bx+c = 0, \ \ a\neq 0

另:

x=y-\frac{b}{2a}

则:

a(y^2-\frac{by}{a}+\frac{b^2}{4a^2})+by-\frac{b^2}{2a}+c=0

ay^2-by+\frac{b^2}{4a}+by-\frac{b^2}{2a}+c=0 \\ \\ ay^2-\frac{b^2}{4a}+c = 0 \\ \\ ay^2=\frac{b^2-4ac}{4a} \\ \\ y^2=\frac{b^2-4ac}{4a^2}

它的根是:

x_{1,2} = \frac{-b \pm \sqrt{b^2-4ac}}{2a}

在二次方程的解析解中,我们可以看到,任意给定一个一般形式的二次方程,我们都可以将其系数带入求根公式得到其精确解。方程的根的解析式是由方程系数经过两次到三次减法,一次加法,三次乘法,一次除法以及一次开方经过有限次运算组合而成,在此意义下,我们说方程是根式可解的。

三次方程一般形:

带入上述方程

(x-\frac{a}{3})^3+a(x-\frac{a}{3})^2+b(x-\frac{a}{3})+c = 0

x^3-\frac{a^3}{27}-3x^2\cdot \frac{a}{3}+3x\frac{a^2}{9}+ax^2-\frac{2a^2x}{3} + \frac{a^3}{9} +bx -\frac{ab}{3}+c=0 \\ \boldsymbol{x^3-(3\cdot\frac{a}{3}-a)x^2-(-\frac{a^2}{3}+\frac{2a^2}{3}-b)x -\frac{a^3}{27}+\frac{a^3}{9}-\frac{ab}{3}+c = 0} \\ x^3 -(\frac{a^2}{3}-b)x + \frac{2a^3}{27}-\frac{ab}{3}+c = 0

最后得到:

\boldsymbol{x^3 -(\frac{a^2}{3}-b)x + \frac{2a^3}{27}-\frac{ab}{3}+c = 0} \\ \\ \\ \boldsymbol{x^3 - (\frac{a^2-3b}{3})x + \frac{2a^3-9ab+27c}{27} = 0}

省略号标识x的一次以及0次各项.由此可见,含有x^2的项是互相抵消了,所以,任意一个三次方程都可以划归为这种形式:

\boldsymbol{\left\{\begin{matrix} p =- \frac{a^2-3b}{3}\ \ \ \ \ \\ \\ q = \frac{2a^3-9ab+27c}{27}\end{matrix}\right.}

转换后的p,q也同样在系数域中,如果系数是有理数,则p,q也是有理数。

更一般的结论是:

y=x-\frac{b}{3a}代入关于y的三次方程ay^3+by^2+cy+d = 0中进行变量转换,得出关于x的三次方程x^3+px+q = 0,于是p,q可以用a,b,c,d表示为以下形式:

\boldsymbol{\left\{\begin{matrix} p =- \frac{b^2-3ac}{3a^2}\ \ \ \ \ \\ \\ q = \frac{2b^3-9abc+27a^2d}{27a^3}\end{matrix}\right.}

言归正传,从和立方公式得到启发:

(u+v)^3 = u^3+v^3+3uv(u+v)

如果将解拆成u,v两个部分的和(u+v=x),则3uv = -p, u^3+v^3 = -q,则和立方公式立刻变形为:

x^3+px+q = 0

所以,得到启发,令

     x=u+v

于是有:

无论两数和u+v是怎样的,我们永远可以要求他们的积等于一个预先给定的值,因为如果给定了u+v=A, B=uv,B的值域可以归结为求抛物线方程的值域问题,或者空间坐标系中抛物线z=xy与x+y=A平面交线z坐标的问题,如下图:

B的任意值,在复数域上u都有对应的解(实数域上二次方程可能无解).如果给定了u+v = A,对于任意B,相当于求解如下二次方程的问题,因为三次方程必有实根,所以u,v要么共厄,要么是有理数,所以下面的方程也必然是有理系数的二次方程,在复数域上,每一个二次方程都有两个根,在现在的情形下,u+v等于我们现在求的三次方程的根。

我们可以要求

因为这样做,可以使得方程不包括u和v的一次项.得到:

(这里的方程可以等于任意的一个实数,比如1,2,7/5等等,只是等于0最为方便,因为u,v是随意取的,在满足u+v=x的基础上,uv的取值在复数域上是任意的,等于不同的数只是相当于在最终的结果上做了一次线性的平移)由方程组容易构成以u^3和v^3为根的二次方程.

可以得到u^3和v^3是二次方程

根据二次方程求根公式:

得到:

\left\{\begin{matrix} u_1 = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}\\u_2 =\omega \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4}+\frac{p^3}{27}}} \\ u_3 = \omega ^2\sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}\end{matrix}\right.

\left\{\begin{matrix} v_1 = \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}\\v_2 =\omega \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4}+\frac{p^3}{27}}} \\ v_3 = \omega ^2\sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4}+\frac{p^3}{27}}}\end{matrix}\right.

所以:

其中:

  \Delta =\frac{q^2}{4}+\frac{p^3}{27}=(\frac{q}{2})^2+(\frac{p}{3})^3

称为判别式!

即便所有根都为实数根,仍然可能遇到判别式为负数的情况,导致虚数被发现,逐渐收到重视!

三次方程必定有一个实数解,此公式给出的就是这个解,另外两个解可以通过长除法,将三次方程转换为二次方程,求二次方程的虚/实根.

根与系数的关系

y^3 + ay^2 + by+c = 0

\boldsymbol{(y-x_1)(y-x_2)(y-x_3) = [(y^2-(x_1+x_2)y+x_1x_2)]\cdot (y-x_3)= y^3-(x_1+x_2)y^2+x_1x_2y - y^2x_3 +(x_1+x_2)x_3y -x_1x_2x_3} = \boldsymbol{y^3 - (x_1+x_2+x_3)y^2+(x_1x_2+x_2x_3+x_1x_3)y-x_1x_2x_3} \\ \\ \boldsymbol{x_1+x_2+x_3 = -a }\\ \boldsymbol{x_1x_2+x_2x_3+x_1x_3=b} \\\boldsymbol{ x_1x_2x_3 = -c}

x_1+x_2+x_3 = -a \\ x_1x_2+x_2x_3+x_1x_3=b \\ x_1x_2x_3 = -c

四次方程求根公式推导过程

四次方程的一般式为:

y^4+ay^3+by^2+cy+d=0

先进行变量替换

y=x-\frac{a}{4}

则化为下列一般首1的简化四次方程:

x^4+px^2+qx+r=0

法国数学家笛卡尔提出的方法:

x^4+px^2+qx+r=(x^2+kx+l)(x^2+nx+m)

\boldsymbol{(x^2+kx+l)(x^2+nx+m)=x^4+nx^3+mx^2+kx^3+knx^2+kmx+lx^2+lnx+lm=}

x^4+(n+k)x^3+(m+kn+l)x^2+(km+ln)x+lm=0

分别比较等式两边各项系数,可以得出:

n=-k, l+m-k^2=p, k(m-l)=q, lm=r.

\boldsymbol{\left\{\begin{matrix} lm = r\\ n + k = 0 \\ km+ln = q \\ m+l+kn = p\end{matrix}\right.\Rightarrow( n = -k ) \left\{\begin{matrix} lm = r\\ m-l = \frac{q}{k} \\ m+l = p+k^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2m=k^2+p+\frac{q}{k} \\ 2l = k^2+p-\frac{q}{k} \\ lm = r \end{matrix}\right. }

得到:

k^6+2pk^4+(p^2-4r)k^2-q^2=0

这是关于k^2的三次方程,因此k是可解的,于是,n, m, l都是可解的。最后从:

x^2+kx+l = 0, x^2+nx +m = 0

便能得出来原方程的解。

这个经典解法是十六世纪的意大利数学家得到的。

历史上,意大利数学家的这个成就发生了很大影响,在当时,新时代的科学还是第一次超过了旧时代的成就,整个中世纪只是处于了解古代著作的潮流影响之下,而终于在这里解决了古代所不能解决的的问题,这是在新的计算科学,解析几何,微分学以及积分学被发现的一百年的时候,这些新的计算学科最终地肯定了新的科学比旧的优越。

这让我想到了我们的情况,长久以来,包括现在,我们一直都陶醉在古老文明的坟头上不愿离去,所以不乏鼓吹孔老二,中医这样的骗子还在一直活跃。不愿意承认别人的优秀,这样的科研学习环境,是没有希望的。

解方程的一般理论

有理系数的高次方程通过乘上一个整数可以变成整系数三次方程,加入如下形式:

ax^n+bx^{n-1}+cx^{n-2} + \cdots +z = 0, a, b, c, ..., z \in Z

如果其存在有理数根

x = \frac{p}{q}

则p必为z的因子,q必为a的因子。

证明很简单:

(x-\frac{p}{q})(ox^{n-1}+\cdots + kx + s) = 0

q\cdot o = a, p\cdot s = -z

得证。

二次方程引入非对称方程的思路:

x^2+bx+c = 0

设方程的根为x1,x2.

(x-x_1)(x-x_2) = x^2-(x_1+x_2)x + x_1x_2 = 0

所以:

x_1+x_2 = -b,\ \ x_1x_2 = c

为了引入一个非对称的方程,我们计算:

b^2-4c = (x_1+x_2)^2 - 4x_1x_2 = x_1^2 +2x_1x_2 + x_2^2 - 4 x_1x_2 = (x_1-x_2)^2

所以

x_1-x_2=\pm \sqrt{b^2-4c}

出现了一个不对称方程,联立

x_1+x_2 = -b

从而得到原方程的解。

根与系数的关系都是对称多项式,根的对称多项式的值可以用系数表示出来,他们具有关于根的某种对称性,在根的置换过程中,对称多项式的值保持不变。如果在根的置换过程当中,一个多项式不满足在根的置换下其值不变,那它就一定不能用系数的加减乘除来表示。

比如为了解二次方程,根与系数的关系无法决定那个是x1,x2,这个时候我们引入一个非对称的方程

x_1-x_2

出来,它一定不能用系数的加减乘除表示,但是我们为了解方程,需要这样一个形式,那该怎么办呢? 如果我们把它转换成对称多项式,是不是就可以用系数表示出来了?所以我么将其二次方:

(x_1-x_2)^2=(x_1+x_2)^2 - 4 x_1x_2

平方后,原来不对称的多项式变成了对称多项式,其一定能够用系数表示出来。代价就是我们进行了扩域。将平方引入了近来。

当进行扩域后,可以将原来不对称的多项式变为对称多项式,进而得到新的限制方程。如果只有对称多项式,是不可能得到方程的解的,必须找出不对称多项式,进行扩域。

我们要找到一个等式,使一部分置换满足,一部分置换不满足,如果找到了,这个一定不是系数域内的等式了。

三次方程

ax^3+bx^2+cx+d=0, \ \ a\neq 0\Leftrightarrow x^3+\frac{b}{a}x^2+\frac{c}{a}x+\frac{d}{a} = 0, \ \ a\neq 0


\mathbf{(x-x_1)(x-x_2)(x-x_3)=[x^2-(x_1+x_2)x+x_1x_2](x-x_3) = [x^3-(x_1+x_2)x^2+x_1x_2x-x_3x^2+(x_1+x_2)x_3 x -x_1x_2x_3]}=\\ \boldsymbol{x^3-(x_1+x_2+x_3)x^2+(x_1x_2+x_1x_3+x_2x_3)x-x_1x_2x_3}


\left\{\begin{matrix} x_1+x_2+x_3=-\frac{b}{a}=q_1\ \ \ \ \ \ \\ \\ x_1x_2+x_2x_3+x_3x_1=\frac{c}{a}=q_2\\ \\ x_1x_2x_3=-\frac{d}{a}=q_3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{matrix}\right.


y_1=x_1+\omega x_2+\omega^2x_3 \\ y_2=x_1+\omega^2 x_2+\omega x_3 \\ y_3=\omega x_1+x_2+\omega^2x_3=\omega y_2 \\ y_4=\omega x_1+\omega^2x_2+x_3 =\omega y_1\\ y_5=\omega^2x_1+\omega x_2 + x_3 =\omega ^2y_2\\ y_6 = \omega^2 x_1 + x_2+\omega x_3=\omega^2y_1

\boldsymbol{ \prod_{i=1}^{6}(y-y_i)=(y-y_1)(y-y_2)(y-y_3)(y-y_4)(y-y_5)(y-y_6)=0 } \\ \\ =\boldsymbol{(y-y_1)(y-y_2)(y-\omega y_2)(y-\omega y_1)(y-\omega^2y_2)(y-\omega ^2y_1)}\boldsymbol{=(y-y_1)(y^2-\omega^2 y y_1-\omega yy_1+y_1^2)(y-y_2)(y^2-\omega ^2y y_2-\omega y y_2+y_2^2)}

\frac{x^3-1}{x-1}=x^2+x+1 \\ \therefore \omega ^2+\omega + 1 = 0 \\ \therefore -\omega^2-\omega = 1

所以:

(y-y_1)(y^2-\omega^2 y y_1-\omega yy_1+y_1^2)(y-y_2)(y^2-\omega ^2y y_2-\omega y y_2+y_2^2)=\boldsymbol{(y-y_1)(y^2+ yy_1+y_1^2)(y-y_2)(y^2+y y_2+y_2^2) = (y^3-y_1^3)(y^3-y_2^3)=0}

y_1y_2=(x_1+\omega x_2+\omega^2x_3)(x_1+\omega^2 x_2+\omega x_3 )= \\ x_1^2+x_2^2+x_3^2+(x_1x_2+x_2x_3+x_1x_3)(\omega+\omega^2) = \\ x_1^2+x_2^2+x_3^2-(x_1x_2+x_2x_3+x_1x_3)=\\ (x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_1x_3)-(x_1x_2+x_2x_3+x_1x_3) = \\ (x_1+x_2+x_3)^2-3(x_1x_2+x_2x_3+x_1x_3)=(q_1^2-3q_2)

y_1^3y_2^3=(q_1^2-3q_2)^3

y_1^3+y_2^3=(x_1+\omega x_2+\omega^2x_3)^3+(x_1+\omega^2 x_2+\omega x_3)^3

(x₁ + ωx₂ + ω²x₃)³ = x₁³ + x₂³ + x₃³ + 3ω(x₁²x₂ + x₂²x₃ + x₃²x₁) + 3ω²(x₁²x₃ + x₂²x₁ + x₃²x₂) + 6x₁x₂x₃

(y₁ + ω²y₂ + ωy₃)³ = x₁³ + x₂³ + x₃³ + 3ω(x₁²x₃ + x₃²x₂ + x₂²x₁) + 3ω²(x₁²x₂ + x₂²x₃ + x₃²x₁) + 6x₁x₂x₃ =

(x₁ + ωx₂ + ω²x₃)³+(y₁ + ω²y₂ + ωy₃)³ = 2(x₁³ + x₂³ + x₃³) + 3ω(x₁²x₂ + x₂²x₃ + x₃²x₁+x₁²x₃ + x₃²x₂ + x₂²x₁) + 3ω²(x₁²x₃ + x₂²x₁ + x₃²x₂ + ₁²x₂ + x₂²x₃ + x₃²x₁) + 12x₁x₂x₃ =

2(x₁³ + x₂³ + x₃³) + 3(ω+ω²)(x₁²x₃ + x₂²x₁ + x₃²x₂ + ₁²x₂ + x₂²x₃ + x₃²x₁)+12x₁x₂x₃ =

2(x₁³ + x₂³ + x₃³) - 3(x₁²x₃ + x₂²x₁ + x₃²x₂ + ₁²x₂ + x₂²x₃ + x₃²x₁)+12x₁x₂x₃ 

x₁³ + x₂³ + x₃³ = (x₁ + x₂ + x₃)³ - 3(x₁ + x₂ + x₃)(x₁x₃ + x₃x₂ + x₂x₁)+3x₁x₂x₃=q₁³-3q₁q₂+3q₃

x₁²x₃ + x₂²x₁ + x₃²x₂ + ₁²x₂ + x₂²x₃ + x₃²x₁ = (x₁ + x₂ + x₃) (x₁x₃ + x₃x₂ + x₂x₁)-3x₁x₂x₃ = q₁q₂-3q₃

12x₁x₂x₃ = 12q₃

y₁³ + y₂³  = 2(q₁³-3q₁q₂+3q₃) - 3(q₁q₂-3q₃)+12q₃ = 2q₁³-9q₁q₂+27q₃

y₁³ y₂³ = (q₁²-3q₂)³

所以,看上去y₁³和y₂³要么是一对共扼复数或者带根号的实数,要么是一组有理数,也就是,他们是一对二次方程的两个根,关于二次方程共扼。

另外注意一个有趣的现象,拉格朗日预解式三次方后只有两个值,对应2阶循环群,这也是为何拉格朗日预解式子这样选取的原因,S3的正规子群是C3,S3/C3的商群是二阶循环群,所以,方程可以解。

y_1^3=(x_1+\omega x_2+\omega^2x_3)^3 \\ \\ y_2^3=(x_1+\omega^2 x_2+\omega x_3)^3 \\ \\ y_3^3=(\omega x_1+x_2+\omega^2x_3)^3=(\omega y_2)^3=\omega^3y_2^3 =y_2^3\\ \\ y_4^3=(\omega x_1+\omega^2x_2+x_3)^3 =(\omega y_1)^3 = \omega ^3y_1^3= y_1^3 \\ \\ y_5^3=(\omega^2x_1+\omega x_2 + x_3)^3 =(\omega ^2y_2)^3=\omega^6y_2^3=y_2^3 \\ \\ y_6^3 = (\omega^2 x_1 + x_2+\omega x_3)^3=(\omega^2y_1)^3=\omega^6y_1^3=y_1^3

所以,三次方程的拉格朗日预解式x_1+\omega x_2+\omega^2 x_3的三次方在三个六种置换的情况下得到2个值。

四次方程

方程:

x^4+mx^3+nx^2+px+q=0

设这个方程的根是a,b,c,d,考虑预解式:

a+sb+s^2c+s^3d

另式中s=-1,是1的四次单位方根之一:

a,b,c,d的全排列有24种,分别计算拉格朗日预解式:

1:a-b+c-d \\ \\ 2:a-b+d-c \\ \\ 3:a-c+b-d \\ \\ 4:a-c+d-b \\ \\ 5:a-d+b-c \\ \\ 6:a-d +c-b \\ \\ 7:b-a+c-d \\ \\ 8:b-a+d-c \\ \\9:b-c+a-d \\ \\ 10:b-c+d-a \\ \\ 11:b-d +a-c \\ \\ 12:b-d +c -a \\ \\ 13:c-b+a-d \\ \\ 14:c-b + d-a \\ \\ 15:c-d+b-a \\ \\ 16:c-d +a -b \\ \\ 17:c-a + b -d \\ \\ 18:c-a +d -b \\ \\ 19:d-a+b-c \\ \\ 20:d-a+c-b \\ \\ 21:d-b + a-c \\ \\ 22:d-b+c-a \\ \\ 23:d-c +a-b\\ \\ 24:d-c +b -a

可以看到:

  1. 式3,5,9,11式子相等,都等于a+b-c-d
  2. 式1,6,13,16式子相等,都等于a+c-b-d
  3. 式2,4,21,23式子相等,都等于a+d-c-b
  4. 式14,18,20,22式子相等,都等于c+d-a-b
  5. 式8,10,19,24式子相等,都等于b+d-a-c
  6. 式7, 12, 15, 17式子相等,都等于b+c-a-d

并且

a+b-c-d = -(c+d-a-b) =\alpha \\ \\ a+c-b-d = -(b+d-a-c) = \beta\\ \\ a+d-c-b = -(b+c-a-d) = \gamma

所以,六个式子可以分别用\alpha, \beta, \gamma, -\alpha, -\beta, -\gamma来标记,那么所考虑的六次方程就是:

(y-\alpha)(y+\alpha)(y-\beta)(y+\beta)(y-\gamma)(y+\gamma) = (y^2-\alpha^2)(y^2-\beta^2)(y^2-\gamma^2) \\ \\ =[y^4-(\alpha^2+\beta^2)y^2+\alpha ^2\beta^2](y^2-\gamma^2)= \\ \\ y^6-(\alpha ^2+\beta^2 + \gamma ^2)y^4+(\alpha^2\beta^2+\alpha^2\gamma^2+\beta^2 \gamma^2)y^2-\alpha^2\beta^2\gamma^2

注意到最后的式子是对称多项式,一定可以由原方程的系数表示。

如果取s=i呢?

1:a+bi-c-di \\ \\ 2:a+bi-d-ci \\ \\ 3:a+ci-b-di \\ \\ 4:a+ci-d-bi \\ \\ 5:a+di-b-ci \\ \\ 6:a+di -c-bi \\ \\ 7:b+ai-c-di \\ \\ 8:b+ai-d-ci \\ \\9:b+ci-a-di \\ \\ 10:b+ci-d-ai \\ \\ 11:b+di -a-ci \\ \\ 12:b+di -c -ai \\ \\ 13:c+bi-a-di \\ \\ 14:c+bi - d-ai \\ \\ 15:c+di-b-ai \\ \\ 16:c+di -a -bi \\ \\ 17:c+ai - b -di \\ \\ 18:c+ai -d -bi \\ \\ 19:d+ai-b-ci \\ \\ 20:d+ai-c-bi \\ \\ 21:d+bi -a-ci \\ \\ 22:d+bi-c-ai \\ \\ 23:d+ci -a-bi\\ \\ 24:d+ci -b -ai

虽然置换有很多种,可能在某些置换下只有几个不同的值,然后通过对这些值的平方或其他幂次进行操作,得到一个方程,从而解出这些值,进而分解原方程。不过貌似除了-1之外,选择别的四次单位根作为拉格朗日方程的系数,四次方后,不能得到更少的根,所以解四次方程,预解式的系数必须选择-1?不确定,需要探究。

\boldsymbol{s_1+s_2+\cdots+s_{24}=(6a+6b+6c+6d)+(6a+6b+6c+6d)\cdot i-(6a+6b+6c+6d) - (6a+6b+6c+6d)\cdot i} \\ \\\boldsymbol{=(6a+6b+6c+6d)-(6a+6b+6c+6d) +(6a+6b+6c+6d)\cdot i-(6a+6b+6c+6d)\cdot i = 0}

可以看到,S4可以分成12个共扼对,所以,相当于s1,s2,...,24都是某个二次方程的解,根据根与系数的关系,通过s1,s2,...,24构成的基本对称多项式一定都是有理数(这个结论还需要仔细在想想,如何用更容易理解的方式证明).

为什么如果方程伽罗瓦群是循环群就一定有根式解?

x^3-1=0

为例,其他拉格朗日预解式:

y_1^3=(x_1+\omega x_2+\omega^2x_3)^3 = 1\\ \\ y_2^3=(x_1+\omega^2 x_2+\omega x_3)^3 = 1

只有一个值了,所以直接开方就好了。

而对于一般的方程,根据拉格朗日定理,通过对根的置换,其所有置换中,保持置换后预解式值不变的置换,一定是所有根的全置换的因数,接着就可以用这些置换不同的值构造一个新的多项式,新的多项式一定比原多项式有更低的次数,然后在以更低阶的多项式为基础,对其根进行同样的处理,得到更低阶的多项式,以次类推,直到最后的可解的低次方程,最后在反过来求解过程中的所有的预解式的方程,预解式方程一定可以直接开出来(形成于单位圆方程),得到最后方程的解。

 S4/V4=S3. 

Qes:

用伽罗瓦理论求解三次方程x^3-2=0, 设根的有理式为x_1+2x_2+4x_3, x_1,x_2,_x3是方程的三个根.

预解式的选取并不是唯一的,设方程为:

x^4+qx^2+rx+s =0

根与系数的关系:

x_1+x_2+x_3+x_4 = 0 \\ \\ x_1x_2+x_2x_3+x_3x_4+x_1x_4+x_2x_4+x_1x_3=q \\ \\ x_1x_2x_3+x_2x_3x_4+x_1x_3x_4+x_1x_2x_4=-r \\ \\ x_1x_2x_3x_4=s

知道S4有一个D4子群,它是8阶的,我们可以根据D4去设计在8种置换下,其值保持不便的有理式,比如:

y_1=(x_1+x_2)(x_3+x_4) \\ \\ y_2=(x_1+x_3)(x_2+x_4) \\ \\ y_3 = (x_1+x_4)(x_2+x_3)

这样,方程

(y-y_1)(y-y_2)(y-y_3)=0

可以展开为:

\boldsymbol{(y-y_1)(y-y_2)(y-y_3)=[y^2-(y_1+y_2)y+y_1y_2)](y-y_3)=y^3-(y_1+y_2)y^2+y_1y_2y-y^2y_3+(y_1+y_2)yy_3-y_1y_2y_3} =\\ y^3-(y_1+y_2+y_3)y^2+(y_1y_2+y_1y_3+y_2y_3)y-y_1y_2y_3=0

y_1+y_2+y_3 =(x_1+x_2)(x_3+x_4)+(x_1+x_3)(x_2+x_4)+(x_1+x_4)(x_2+x_3) = \\ \\ \boldsymbol{x_1x_3+x_1x_4+x_2x_3+x_2x_4 + x_1x_2+x_1x_4+x_3x_2+x_3x_4+x_1x_2+x_1x_3+x_4x_2+x_4x_3} = \\ \\ 2x_1x_3+2x_1x_4+2x_2x_3+2x_2x_4+2x_1x_2+2x_3x_4= 2q

y_1y_2+y_1y_3+y_2y_3=\boldsymbol{(x_1+x_2)(x_3+x_4)(x_1+x_3)(x_2+x_4)+(x_1+x_2)(x_3+x_4)(x_1+x_4)(x_2+x_3)+(x_1+x_3)(x_2+x_4)(x_1+x_4)(x_2+x_3)} = \\ \\ (x_1x_3+x_1x_4+x_2x_3+x_2x_4)(x_1x_2+x_1x_4+x_3x_2+x_3x_4) + \\ \\ (x_1x_3+x_1x_4+x_2x_3+x_2x_4)(x_1x_2+x_1x_3+x_4x_2+x_4x_3) + \\ \\ (x_1x_2+x_1x_4+x_3x_2+x_3x_4)(x_1x_2+x_1x_3+x_4x_2+x_4x_3) = q^2-4s

y_1y_2y_3=(x_1+x_2)(x_3+x_4)(x_1+x_3)(x_2+x_4)(x_1+x_4)(x_2+x_3)=r^2

所以,三次预解方程为:

y^3-2qy^2+(q^2-4s)y-r^2=0

根的有理式的选择方法

我们选择的根的有理式实际上是预解式的根,在伽罗瓦理论中,拉格朗日预解式的选择并非完全任意,但其构造确实存在一定的灵活性。拉格朗日预解式(Lagrange resolvent)是一种通过引入对称性较低的辅助变量来分解高次方程的方法。其目的是将原方程的伽罗瓦群逐步分解为更简单的子群,从而允许通过根式求解。

如果仅仅是满足根的对称性,最后可以用根的基本对称多项式表示,从而用方程的系数域表示拉格朗日预解式,似乎任何关于根的有理式都可以满足:

比如:

y_1=ax_0+bx_1+\cdots + z x_n \\ \\ y_2 = ax_1+bx_0+\cdots +zx_n \\ \\ \vdots \\ \\ y_n = ax_n+bx_{n-1}+\cdots+zx_0

这样,以根的多项式为根的拉格朗日预解方程为:

(y-y_1)(y-y_2)\cdots(y-y_n) = 0

不用展开,由于y_1,y_2,y_3,\cdots, y_n包含了根的所有置换,所以拉格朗日预解式在S_n的作用下保持不变,根据韦达定理得到的根与系数的关系也是关于所有的根置对称的,所以也能用原方程的系数域表示,所以看上去,根的有理方程选择要求并不高。

当然,虽然能够满足对称性,但是似乎如果不和伽罗瓦群挂钩选择有理式,得到的不变有理式就不会缩小,这样伽罗瓦群就不会缩小,拉格朗日预解式的次数就有可能不会降低甚至比原方程还要高,这样就很难求解了。


https://zhuanlan.zhihu.com/p/509199789

结束

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值