红外热像仪标定

红外热像仪的标定关键在与从红外图像生成对应的棋盘格图像,生成棋盘格图像后即可运用张正友标定法进行标定。

         具体的标定步骤如下:

         1> 将图像从RGB颜色空间转换到HLS颜色空间,然后提取红色分量的范围,在红色范围的图像全部改为标准红色,其他颜色改为标准蓝色,然后转回RGB空间;

         2>将生成的图像从RGB颜色空间转换到灰度空间,进行直方图均衡化和滤波处理。

                

            

        3>提取图像的轮廓,去除面积过小或者线段长度过短的轮廓,并将前一个轮廓的终点与下一个轮廓的起始点连接起来,从而将提取的所有轮廓线连成一根轮廓;

        4>提取轮廓线图像的凸包,并采用自适应算法将其近似成六边形。具体来讲就是通过控制

                   4.1:  convexHull(Mat(contours_link[i]), hull[i]);提取凸包
                   4.2:  approxPolyDP(Mat(hull[i]), poly[i], ratio * 5, true);通过控制ratio来控制控制精度使凸包近似成多边形,使之产生一个六边形;

        5>查找六边形的两个短边(1-2和4-5),并根据直线找交点的办法(0-1与2-3)和(0-5与3-4)找出s1,s2,从而确立四边形的四个顶点0,s1,3,s2;

            

       

       6> 利用四个顶点0,s1,3,s2和标准棋盘格(60,60)(60,420)(420,420)(420,60)进行透射变换,得到原图像的正视图;对透射图再次均衡化,并提取外轮廓;

       7> 对图像从上到下,从下到上,从左到右,从右到左,计算每行或者每列小于9个像素的终止值,对这些画出行列直线;

       8> 根据画出的行列计算棋盘格的中心和棋盘格大小;

       9> 生成棋盘格图像,并利用透射反变换生成原红外图像对应的棋盘格图像并进行标定;

              

            

      



    

 

    

 

转载于:https://www.cnblogs.com/serser/p/8184471.html

### 热像仪标定的技术概述 热像仪的标定通常涉及其内外参数的精确计算,以便与其他传感器(如摄像头、激光雷达等)协同工作。以下是对热像仪标定方法和技术的具体分析: #### 1. 外参标定 外参标定是指确定热像仪相对于其他传感器的空间位置和姿态关系。一种常见的方式是利用多模态传感器融合技术来实现这一目标。 根据已有研究[^2],可以通过RGB-D相机获取深度信息,并将其作为中间桥梁用于热像仪与毫米波雷达之间的相对位姿估计。具体而言,该过程包括以下几个方面: - **特征提取**:从热像仪图像中提取显著特征点,并与RGB-D相机捕获的数据集中的对应点建立关联。 - **配准优化**:借助迭代最近点算法(ICP),将热成像数据投影到三维空间并与已知模型进行匹配调整直至误差最小化为止。 #### 2. 内参标定 内参标定主要关注于校正镜头畸变以及定义像素坐标系同实际世界单位长度间的关系等问题上。对于红外热像设备来说,由于其物理特性和可见光摄像装置存在差异,在执行此类操作时需特别注意温度分布均匀性的保持等因素的影响。 在某些情况下, 可能会采用棋盘格图案或者专门设计的目标物来进行自动化的内部几何属性测定程序; 同样地, 当涉及到非线性失真修正处理环节的时候,则往往依赖多项式函数拟合或者其他高级数学工具完成任务。 ```python import numpy as np from scipy.optimize import least_squares def calibrate_intrinsic(params, points_3d, points_2d): """ Function used to optimize intrinsic parameters. Args: params (list): List containing initial guess of camera matrix elements. points_3d (array-like): Array representing the coordinates in world space. points_2d (array-like): Corresponding pixel locations on image plane. Returns: residuals: Difference between observed and predicted projections after applying current set of intrinsics. """ K = construct_camera_matrix(*params[:5]) # Assuming first five entries represent focal lengths & principal point offsets etc. projected_points = project(K, *points_3d.T).T return (projected_points - points_2d).ravel() result = least_squares(calibrate_intrinsic, init_guess, args=(world_coords, img_pts)) optimized_intrinsics = result.x ``` 上述代码片段展示了如何使用Python库`scipy`中的`least_squares()`函数去寻找最佳内在矩阵\(K\)使得重投射误差达到最低水平。 #### 3. 联合标定策略 当需要同步考虑多个异构感知单元间的相互作用效果时,“手-眼”框架下的解决方案便显得尤为重要起来。正如前面提到过的那样,单步法相较于传统两阶段分解方式能够提供更高的准确性表现形式[^1]^。因此,在面对复杂场景需求比如无人驾驶汽车环境监测应用领域当中,可以优先选用这种集成型思路开展整体系统的联合调试作业活动。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值