Django~表的操作

增(create  ,  save) 

from app01.models import *
   #create方式一:   Author.objects.create(name='Alvin')
   #create方式二:   Author.objects.create(**{"name":"alex"})
   #save方式一:     author=Author(name="alvin")
                   author.save()
   #save方式二:     author=Author()
                   author.name="alvin"
                   author.save()

 

重点来了,那么如何创建存在一对多或多对多关系的一本书的信息呢?(如何处理外键关系的字段如一对多的publisher和多对多的authors)

#一对多(ForeignKey):

   #方式一: 由于绑定一对多的字段,比如publish,存到数据库中的字段名叫publish_id,所以我们可以直接给这个
   #       字段设定对应值:
          Book.objects.create(title='php',
                              publisher_id=2,   #这里的2是指为该book对象绑定了Publisher表中id=2的行对象
                              publication_date='2017-7-7',
                              price=99)
   #方式二:
   #       <1> 先获取要绑定的Publisher对象:
       pub_obj=Publisher(name='河大出版社',address='保定',city='保定',
               state_province='河北',country='China',website='http://www.hbu.com')
   OR  pub_obj=Publisher.objects.get(id=1)

   #       <2>将 publisher_id=2 改为  publisher=pub_obj
#多对多(ManyToManyField()):
   author1=Author.objects.get(id=1)
   author2=Author.objects.filter(name='alvin')[0]
   book=Book.objects.get(id=1)
   book.authors.add(author1,author2)
   #等同于:
   book.authors.add(*[author1,author2])
   book.authors.remove(*[author1,author2])
   #-------------------
   book=models.Book.objects.filter(id__gt=1)
   authors=models.Author.objects.filter(id=1)[0]
   authors.book_set.add(*book)
   authors.book_set.remove(*book)
   #-------------------
   book.authors.add(1)
   book.authors.remove(1)
   authors.book_set.add(1)
   authors.book_set.remove(1)

#注意: 如果第三张表是通过models.ManyToManyField()自动创建的,那么绑定关系只有上面一种方式
#     如果第三张表是自己创建的:
    class Book2Author(models.Model):
           author=models.ForeignKey("Author")
           Book=  models.ForeignKey("Book")
#     那么就还有一种方式:
           author_obj=models.Author.objects.filter(id=2)[0]
           book_obj  =models.Book.objects.filter(id=3)[0]

s=models.Book2Author.objects.create(author_id=1,Book_id=2)
           s.save()
           s=models.Book2Author(author=author_obj,Book_id=1)
           s.save()

 

删(delete)

>>> Book.objects.filter(id=1).delete()
(3, {'app01.Book_authors': 2, 'app01.Book': 1})

 

如果是多对多的关系: remove()和clear()方法: 

#正向
book = models.Book.objects.filter(id=1)

#删除第三张表中和女孩1关联的所有关联信息
book.author.clear()        #清空与book中id=1 关联的所有数据
book.author.remove(2)  #可以为id
book.author.remove(*[1,2,3,4])     #可以为列表,前面加*

#反向
author = models.Author.objects.filter(id=1)
author.book_set.clear() #清空与boy中id=1 关联的所有数据

 

改(update和save)

注意:

<1> 第二种方式修改不能用get的原因是:update是QuerySet对象的方法,get返回的是一个model对象,它没有update方法,而filter返回的是一个QuerySet对象(filter里面的条件可能有多个条件符合,比如name='alvin',可能有两个name='alvin'的行数据)。

<2>在“插入和更新数据”小节中,我们有提到模型的save()方法,这个方法会更新一行里的所有列。 而某些情况下,我们只需要更新行里的某几列。

#---------------- update方法直接设定对应属性----------------
   models.Book.objects.filter(id=3).update(title="PHP")
   ##sql:
   ##UPDATE "app01_book" SET "title" = 'PHP' WHERE "app01_book"."id" = 3; args=('PHP', 3)

#--------------- save方法会将所有属性重新设定一遍,效率低-----------
   obj=models.Book.objects.filter(id=3)[0]
   obj.title="Python"
   obj.save()
# SELECT "app01_book"."id", "app01_book"."title", "app01_book"."price", 
"app01_book"."color", "app01_book"."page_num", 
"app01_book"."publisher_id" FROM "app01_book" WHERE "app01_book"."id" = 3 LIMIT 1; 

# UPDATE "app01_book" SET "title" = 'Python', "price" = 3333, "color" = 'red', "page_num" = 556,
"publisher_id" = 1 WHERE "app01_book"."id" = 3;

 

在这个例子里我们可以看到Django的save()方法更新了不仅仅是title列的值,还有更新了所有的列。 若title以外的列有可能会被其他的进程所改动的情况下,只更改title列显然是更加明智的。更改某一指定的列,我们可以调用结果集(QuerySet)对象的update()方法,与之等同的SQL语句变得更高效,并且不会引起竞态条件。

此外,update()方法对于任何结果集(QuerySet)均有效,这意味着你可以同时更新多条记录update()方法会返回一个整型数值,表示受影响的记录条数。

注意,这里因为update返回的是一个整形,所以没法用query属性;对于每次创建一个对象,想显示对应的raw sql,需要在settings加上日志记录部分:

LOGGING = {
   'version': 1,
   'disable_existing_loggers': False,
   'handlers': {
       'console':{
           'level':'DEBUG',
           'class':'logging.StreamHandler',
       },
   },
   'loggers': {
       'django.db.backends': {
           'handlers': ['console'],
           'propagate': True,
           'level':'DEBUG',
       },
   }
}

 

注意:如果是多对多的改:

obj=Book.objects.filter(id=1)[0]
   author=Author.objects.filter(id__gt=2)
   obj.author.clear()
   obj.author.add(*author)

 

查(filter,value等)

查询API:

# 查询相关API:
#  <1>filter(**kwargs):      它包含了与所给筛选条件相匹配的对象
#  <2>all():                 查询所有结果
#  <3>get(**kwargs):         返回与所给筛选条件相匹配的对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。
#-----------下面的方法都是对查询的结果再进行处理:比如 objects.filter.values()--------
#  <4>values(*field):        返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列 model的实例化对象,而是一个可迭代的字典序列                                    
#  <5>exclude(**kwargs):     它包含了与所给筛选条件不匹配的对象
#  <6>order_by(*field):      对查询结果排序
#  <7>reverse():             对查询结果反向排序
#  <8>distinct():            从返回结果中剔除重复纪录
#  <9>values_list(*field):   它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列
#  <10>count():              返回数据库中匹配查询(QuerySet)的对象数量。
# <11>first():               返回第一条记录
# <12>last():                返回最后一条记录
#  <13>exists():             如果QuerySet包含数据,就返回True,否则返回False。

 

惰性机制:

所谓惰性机制:Publisher.objects.all()或者.filter()等都只是返回了一个QuerySet(查询结果集对象),它并不会马上执行sql,而是当调用QuerySet的时候才执行。

QuerySet特点:

       <1>  可迭代的

       <2>  可切片

#objs=models.Book.objects.all()#[obj1,obj2,ob3...]
   #QuerySet:   可迭代
   # for obj in objs:#每一obj就是一个行对象
   #     print("obj:",obj)
   # QuerySet:  可切片
   # print(objs[1])
   # print(objs[1:4])
   # print(objs[::-1])

 

QuerySet的高效使用:

<1>Django的queryset是惰性的

    Django的queryset对应于数据库的若干记录(row),通过可选的查询来过滤。例如,下面的代码会得
    到数据库中名字为‘Dave’的所有的人:person_set = Person.objects.filter(first_name="Dave")
    上面的代码并没有运行任何的数据库查询。你可以使用person_set,给它加上一些过滤条件,或者将它传给某个函数,
    这些操作都不会发送给数据库。这是对的,因为数据库查询是显著影响web应用性能的因素之一。

<2>要真正从数据库获得数据,你可以遍历queryset或者使用if queryset,总之你用到数据时就会执行sql.
  为了验证这些,需要在settings里加入 LOGGING(验证方式)
       obj=models.Book.objects.filter(id=3)
       # for i in obj:
       #     print(i)

       # if obj:
       #     print("ok")

<3>queryset是具有cache的
    当你遍历queryset时,所有匹配的记录会从数据库获取,然后转换成Django的model。这被称为执行
   (evaluation).这些model会保存在queryset内置的cache中,这样如果你再次遍历这个queryset,
    你不需要重复运行通用的查询。
       obj=models.Book.objects.filter(id=3)

       # for i in obj:
       #     print(i)
                         ## models.Book.objects.filter(id=3).update(title="GO")
                         ## obj_new=models.Book.objects.filter(id=3)
       # for i in obj:
       #     print(i)   #LOGGING只会打印一次

<4>
    简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些
    数据!为了避免这个,可以用exists()方法来检查是否有数据:

           obj = Book.objects.filter(id=4)
           #  exists()的检查可以避免数据放入queryset的cache。
           if obj.exists():
               print("hello world!")
<5>当queryset非常巨大时,cache会成为问题
    处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统
    进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法
    来获取数据,处理完数据就将其丢弃。
       objs = Book.objects.all().iterator()
       # iterator()可以一次只从数据库获取少量数据,这样可以节省内存
       for obj in objs:
           print(obj.name)
       #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
       for obj in objs:
           print(obj.name)

    #当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使
    #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询

总结:
   queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。
使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能
会造成额外的数据库查询。

 

对象查询,单表条件查询,多表条件关联查询

#--------------------对象形式的查找--------------------------
   # 正向查找
   ret1=models.Book.objects.first()
   print(ret1.title)
   print(ret1.price)
   print(ret1.publisher)
   print(ret1.publisher.name)  #因为一对多的关系所以ret1.publisher是一个对象,而不是一个queryset集合

   # 反向查找
   ret2=models.Publish.objects.last()
   print(ret2.name)
   print(ret2.city)
   #如何拿到与它绑定的Book对象呢?
   print(ret2.book_set.all()) #ret2.book_set是一个queryset集合

#---------------了不起的双下划线(__)之单表条件查询----------------

#    models.Tb1.objects.filter(id__lt=10, id__gt=1)   # 获取id大于1 且 小于10的值
#
#    models.Tb1.objects.filter(id__in=[11, 22, 33])   # 获取id等于11、22、33的数据
#    models.Tb1.objects.exclude(id__in=[11, 22, 33])  # not in
#
#    models.Tb1.objects.filter(name__contains="ven")
#    models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感
#
#    models.Tb1.objects.filter(id__range=[1, 2])   # 范围bettwen and
#
#    startswith,istartswith, endswith, iendswith,

#----------------了不起的双下划线(__)之多表条件关联查询---------------

# 正向查找(条件)

#     ret3=models.Book.objects.filter(title='Python').values('id')
#     print(ret3)#[{'id': 1}]

     #正向查找(条件)之一对多

     ret4=models.Book.objects.filter(title='Python').values('publisher__city')
     print(ret4)  #[{'publisher__city': '北京'}]

     #正向查找(条件)之多对多
     ret5=models.Book.objects.filter(title='Python').values('author__name')
     print(ret5)
     ret6=models.Book.objects.filter(author__name="alex").values('title')
     print(ret6)

     #注意
     #正向查找的publisher__city或者author__name中的publisher,author是book表中绑定的字段
     #一对多和多对多在这里用法没区别

# 反向查找(条件)

   #反向查找之一对多:
   ret8=models.Publisher.objects.filter(book__title='Python').values('name')
   print(ret8)#[{'name': '人大出版社'}]  注意,book__title中的book就是Publisher的关联表名

   ret9=models.Publisher.objects.filter(book__title='Python').values('book__authors')
   print(ret9)#[{'book__authors': 1}, {'book__authors': 2}]

   #反向查找之多对多:
   ret10=models.Author.objects.filter(book__title='Python').values('name')
   print(ret10)#[{'name': 'alex'}, {'name': 'alvin'}]

   #注意
   #正向查找的book__title中的book是表名Book
   #一对多和多对多在这里用法没区别

 

条件查询即与对象查询对应,是指在filter,values等方法中的通过__来明确查询条件。

 

聚合查询和分组查询

<1> aggregate(*args,**kwargs):

通过对QuerySet进行计算,返回一个聚合值的字典。aggregate()中每一个参数都指定一个包含在字典中的返回值。即在查询集上生成聚合。

from django.db.models import Avg,Min,Sum,Max

从整个查询集生成统计值。比如,你想要计算所有在售书的平均价钱。Django的查询语法提供了一种方式描述所有
图书的集合。
>>> Book.objects.all().aggregate(Avg('price'))
{'price__avg': 34.35}

aggregate()子句的参数描述了我们想要计算的聚合值,在这个例子中,是Book模型中price字段的平均值

aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。键的名称是聚合值的
标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。如果你想要为聚合值指定
一个名称,可以向聚合子句提供它:
>>> Book.objects.aggregate(average_price=Avg('price'))
{'average_price': 34.35}

如果你也想知道所有图书价格的最大值和最小值,可以这样查询:
>>> Book.objects.aggregate(Avg('price'), Max('price'), Min('price'))
{'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99')}

 

<2> annotate(*args,**kwargs):

可以通过计算查询结果中每一个对象所关联的对象集合,从而得出总计值(也可以是平均值或总和),即为查询集的每一项生成聚合。

查询alex出的书总价格          

 

查询各个作者出的书的总价格,这里就涉及到分组了,分组条件是authors__name 

 

查询各个出版社最便宜的书价是多少

 

F查询和Q查询

仅仅靠单一的关键字参数查询已经很难满足查询要求。此时Django为我们提供了F和Q查询:

# F 使用查询条件的值,专门取对象中某列值的操作

   # from django.db.models import F
   # models.Tb1.objects.update(num=F('num')+1)

# Q 构建搜索条件
   from django.db.models import Q

   #1 Q对象(django.db.models.Q)可以对关键字参数进行封装,从而更好地应用多个查询
   q1=models.Book.objects.filter(Q(title__startswith='P')).all()
   print(q1)#[<Book: Python>, <Book: Perl>]

   # 2、可以组合使用&,|操作符,当一个操作符是用于两个Q的对象,它产生一个新的Q对象。
   Q(title__startswith='P') | Q(title__startswith='J')

   # 3、Q对象可以用~操作符放在前面表示否定,也可允许否定与不否定形式的组合
   Q(title__startswith='P') | ~Q(pub_date__year=2005)
   # 4、应用范围:
   # Each lookup function that takes keyword-arguments (e.g. filter(),
   #  exclude(), get()) can also be passed one or more Q objects as
   # positional (not-named) arguments. If you provide multiple Q object
   # arguments to a lookup function, the arguments will be “AND”ed
   # together. For example:

   Book.objects.get(
       Q(title__startswith='P'),
       Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))
   )
   #sql:
   # SELECT * from polls WHERE question LIKE 'P%'
   #     AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06')

   # import datetime
   # e=datetime.date(2005,5,6)  #2005-05-06

   # 5、Q对象可以与关键字参数查询一起使用,不过一定要把Q对象放在关键字参数查询的前面。
   # 正确:
   Book.objects.get(
       Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
       title__startswith='P')
   # 错误:
   Book.objects.get(
       question__startswith='P',
       Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)))

 


识别图中二维码,领取python全套视频资料

 

转载于:https://www.cnblogs.com/IT-Scavenger/p/9287453.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值