"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.
Input
A number N per line.
Output
Sample Input
2 6
Sample Output
3 15
题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2,n)+gcd(3,n)+…………gcd(n-1,n)+gcd(n,n),(1<=n<2^31)是多少?
欧拉函数
转https://www.cnblogs.com/handsomecui/p/4755455.html
在数论中,对于正整数N,少于或等于N ([1,N]),且与N互质的正整数(包括1)的个数,记作φ(n)。
φ函数的值:
φ(x)=x(1-1/p(1))(1-1/p(2))(1-1/p(3))(1-1/p(4))…..(1-1/p(n)) 其中p(1),p(2)…p(n)为x
的所有质因数;x是正整数; φ(1)=1(唯一和1互质的数,且小于等于1)。注意:每种质因数只有一个。
例如:
φ(10)=10×(1-1/2)×(1-1/5)=4;
1 3 7 9
φ(30)=30×(1-1/2)×(1-1/3)×(1-1/5)=8;
φ(49)=49×(1-1/7)=42;
欧拉函数的性质:
(1) p^k型欧拉函数:
若N是质数p(即N=p), φ(n)= φ(p)=p-p^(k-1)=p-1。
若N是质数p的k次幂(即N=p^k),φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。
(2)mn型欧拉函数
设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值。若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。
(3)特殊性质:
若n为奇数时,φ(2n)=φ(n)。
对于任何两个互质 的正整数a,n(n>2)有:a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理
当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod n (恒等于)此公式即 费马小定理
同余定理:
如果 a mod b = c 则有(a+kb) mod b =c(k为非0整数)
如果 a mod b = c 则有(ka) mod b =kc (k为正整数)
(a+b) mod c =((a mod c)+(b mod c )) mod c;
(a*b) mod c=((a mod c)*(b mod c)) mod c
phi(n/i)则为和n最大公约数为i的个数
素数p的欧拉函数值为p-1;
欧拉函数模板
int phi(int n)//直接求 { int t=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { t=t/i*(i-1); while(n%i==0) n/=i; } } if(n>1) t=t/n*(n-1); return t; } int p[1000001]; void init()//打表 { memset(p,0,sizeof(p)); p[1]=1; for(int i=2;i<1000000;i++) { if(p[i]==0) { for(int j=i;j<1000000;j+=i) { if(p[j]==0) p[j]=j; p[j]=p[j]/i*(i-1); } } } }
题解
#include<iostream> #include<stdio.h> #define ll long long using namespace std; ll phi(int n) { ll res=n; for(ll i=2;i*i<=n;i++) { if(n%i==0) { res=res/i*(i-1); while(n%i==0)n/=i; } } if(n>1) res=res/n*(n-1); return res; } int main() { ll n; while(scanf("%lld",&n)!=EOF) { ll ans=0; for(ll i=1;i*i<=n;i++)//这里是循环了logn { if(n%i==0) { ans+=i*phi(n/i);//phi(n/i)则为和n最大公约数为i的个数 if(i*i!=n)//让其不重复 { ans+=n/i*phi(i);//和n最大公约数为n/i的个数 } } } cout<<ans<<endl; } return 0; }