从exgcd到exCRT

从最基础的开始。
1.gcd
这个不用说了吧……\(gcd(a,b) = gcd(b,a\%b)\),这个很显然。

2.exgcd
这玩意可以用来求形如\(ax+by = gcd(a,b)\)的不定方程的一组特解。
首先来证明一下为什么一定是有解的。
因为我们是像上面的gcd一样递归解决问题的,所以当\(b = 0\)时,我们返回a,此时方程必然有一个特解\(x = 1,y = 0\)成立。
我们假设现在已经求出了一组解\(x_1,y_1\),我们要求下一组解\(x_2,y_2\)
\(ax_1 + by_1 = gcd(a,b) = gcd(b,a\%b) = bx_2 + (a\%b)y_2\)
\(a\%b = a - \lfloor\frac{a}{b}\rfloor * b\)
\(ax_1 + by_1 = bx_2 + ay_2 - b\lfloor\frac{a}{b}\rfloor y_2\)
合并同类项,得到\(ax_1 + by_1 = b(x_2 - \lfloor\frac{a}{b}\rfloor y_2) + ay_2\)
所以得到\(x_1 = y_2,y_1 = x_2 - \lfloor\frac{a}{b}\rfloor y_2\)
这样推下去一定可以得到方程的一组解,所以形如\(ax+by = gcd(a,b)\)的方程是一定有解的。
同理我们可以推出,对于不定方程\(ax+by = c\),此方程有解的充要条件是\(gcd(a,b) | c\),我们可以先求出\(ax+by = gcd(a,b)\)的特解,然后把解同时乘以\(\frac{c}{gcd(a,b)}\)就得到了解。

这玩意还可以用来求逆元(前提是这个数和模数必须互质),对于式子\(ax \equiv 1 (mod\ p)\),改写成\(ax - py = 1\),求不定方程解即可。\((gcd(a,p) = 1)\),必然有解。

实现方法如下。

int exgcd(int a,int b,int &x,int &y)
{
    if(!b){x = 1,y = 0;return a;}
    int d = exgcd(b,a%b,y,x);
    y -= a / b * x;
    return d;
}

3.CRT
中国剩余定理(CRT),是用于解同余方程的一种方法。
同余方程就是给定多个形如\(x \equiv a_i (mod\ b_i)\)的方程,其中\(b_i\)两两互质。求x的最小正整数解。
方法的思想个人认为其实是构造。
就是对于一个\(a_i\),我们构造一个数\(G_i\),使得\(G_i\)满足\(G_i \equiv a_i(mod\ b_i),G_i \equiv 0(mod\ b_j),(j\neq\ i)\)
想要满足后面那项比较容易,我们直接取\(\prod_{j\neq\ i}b_i\)即可。但是如何让他同时满足前一项?
这个也是比较简单的,对于\(G_i\),我们先求出其在\(mod\ b_i\)意义下的逆元\(inv_i\),那么\(G_i * inv_i * a_i\)即为我们要构造的答案。求逆元的时候用exgcd即可。
最后我们求出所有\(b_i\)\(lcm\),因为两两互质其实就是\(\prod_{i=1}^nb_i\),把所有的\(G_i\)加在一起。对lcm取模即为答案。这个还是很好理解的。
有一道板子题[TJOI2009]猜数字代码实现如下。

#include<bits/stdc++.h>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n')

using namespace std;
typedef long long ll;
const int M = 500005;
const int INF = 1000000009;
const double eps = 1e-7;

ll read()
{
   ll ans = 0,op = 1;char ch = getchar();
   while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
   while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
   return ans * op;
}

ll k,a[15],b[15],L = 1,ans;

ll exgcd(ll a,ll b,ll &x,ll &y)
{
   if(!b){x = 1,y = 0;return a;}
   ll d = exgcd(b,a%b,y,x);
   y -= a / b * x;
   return d;
}
ll mul(ll a,ll b,ll t)
{
   ll cur = a * b - (ll)((long double)a / t * b + eps) * t;
   return (cur % t + t) % t;
}
ll inc(ll a,ll b,ll t){return (a+b) % t;}

int main()
{
   k = read();
   rep(i,1,k) a[i] = read();
   rep(i,1,k) b[i] = read(),L *= b[i];
   rep(i,1,k)
   {
      ll x,y,cur = L / b[i];
      exgcd(cur,b[i],x,y),x = (x % b[i] + b[i]) % b[i];
      ans = inc(ans,mul(mul(cur,x,L),a[i],L),L);
   }
   printf("%lld\n",ans);
   return 0;
}

4.exCRT
对于上面的问题我们解决的很顺利,因为我们保证了\(b_i\)是两两互质的,这也就使得所有构造出的\(G_i\)都是有逆元的。
但是如果\(b_i\)不是两两互质的,或者有时候有太多的同余方程,使得\(\prod{i=1}^nb_i\)根本无法计算,那这时候怎么解决问题呢?
于是就有了拓展中国剩余定理(exCRT).
首先,我们假设现在已经求出了前k-1个方程的一个解x,同时也知道\(M =LCM_{i=1}^{k-1} b_i\),那么前k-1个方程的通解就是\(x + tM\)
我们要求第k个方程的解,那么其实也就是求一个整数t,使得\(x + tM \equiv a_k(mod\ b_k)\)
这个式子是可以用\(exgcd\)求解的,如果无解那么就说明整个同余方程也是无解的。
否则的话前面k个方程的通解就是\(x + tM\),并且M要更新为\(LCM_{i=1}^k b_i\)

那么我们来看一道例题。[NOI2018]屠龙勇士
首先,每次攻击所用的剑是可以预先得知的,使用set处理一下即可。
那么我们的任务就变成了求解\(c_ix \equiv a_i (mod\ p_i)\)这样一个同余方程的最小正整数解。
这里有一个问题,就是只有当所有\(a_i < p_i\)的时候才成立,否则就会出现一个问题就是,你在攻击龙的时候可能没有把龙的血量打成负数,但是成为了\(p_i\)的倍数,这样在这个同余方程的计算中龙也是死了,但是你的解肯定是不对的。不过对于任意一个没有保证\(a_i < p_i\)的点,都有所有的\(p_i = 1\),那么答案很显然就是\(max_{i=1}^n\lceil\frac{a_i}{c_i}\rceil\),特判掉就好了。
回到这个问题上,但是这个同余方程和我们熟悉的形式不一样……我们也不能直接把\(c_i\)消掉 ,因为\(c_i\)不一定有\(mod\ p_i\)意义下的逆元。
那我们把这个方程组转化一下。
对于一个\(c_ix \equiv a_i (mod\ p_i)\),我们可以把它改写成为\(c_ix - p_iy = a_i\)的一个形式。这个式子是可以用exgcd求解的。我们只要求出这个式子的一组特解\(sx\),那么就有了\(x \equiv sx (mod\ gcd(c_i,p_i))\),于是同余方程就转化为我们熟悉的样子了。
之后只要用\(exCRT\)求解即可。注意本题需要使用龟速乘或者那个神奇的乘法,否则中间会爆longlong。

#include<bits/stdc++.h>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n')

using namespace std;
typedef long long ll;
const int M = 500005;
const int INF = 1000000009;
const double eps = 1e-7;

ll read()
{
   ll ans = 0,op = 1;char ch = getchar();
   while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
   while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
   return ans * op;
}

ll T,n,m,a[M],p[M],c[M],g[M],s[M],bonus[M],att[M];
bool flag;
multiset<ll> q;
multiset<ll> :: iterator it;

ll inc(ll a,ll b,ll t){return (a + b) % t;}
ll mul(ll a,ll b,ll t)
{
   ll tmp = (a * b - (ll)((long double)a / t * b + 1.0e-8) * t);
   return (tmp % t + t) % t;
}
ll gcd(ll a,ll b){return b ? gcd(b,a%b) : a;}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
   if(!b){x = 1,y = 0;return a;}
   ll d = exgcd(b,a%b,y,x);
   y -= a / b * x;
   return d;
}

void solve1()
{
   ll ans = 0;
   rep(i,1,n)
   {
      ll cur = (a[i] % c[i]) ? a[i] / c[i] + 1 : a[i] / c[i];
      ans = max(ans,cur);
   }
   printf("%lld\n",ans);
}

void init()
{
   n = read(),m = read(),q.clear(),flag = 0;
   rep(i,1,n) a[i] = read();
   rep(i,1,n) p[i] = read();
   rep(i,1,n) bonus[i] = read();
   rep(i,1,m) att[i] = read(),q.insert(att[i]);
   rep(i,1,n)
   {
      ll k = *(q.begin());
      if(a[i] < k) c[i] = k,q.erase(q.begin());
      else it = q.upper_bound(a[i]),--it,c[i] = *(it),q.erase(it);
      q.insert(bonus[i]);
   }
   rep(i,1,n) if(a[i] > p[i]) {solve1(),flag = 1;break;}
}

ll excrt()
{
   ll N = p[1],ans = s[1],x,y;
   rep(i,2,n)
   {
      ll a = N,b = p[i],c = (s[i] - ans % b + b) % b;
      ll G = exgcd(a,b,x,y),b1 = b / G;
      if(c % G) {return -1;}
      x = mul(x,c/G,b1),ans += x * N,N *= b1;
      ans = (ans % N + N) % N;
   }
   return (ans % N + N) % N;
}

int main()
{
   T = read();
   while(T--)
   {
      init();if(flag) continue;
      rep(i,1,n)
      {
     ll x,y,G = gcd(c[i],p[i]);
     if(a[i] % G) {flag = 1;break;}
     p[i] /= G,exgcd(c[i] / G,p[i],x,y);
     x = (x % p[i] + p[i]) % p[i],s[i] = mul(x,a[i] / G,p[i]);
      }
      if(flag){printf("-1\n");continue;}
      ll ans = excrt();
      printf("%lld\n",ans);
   }
   return 0;
}

转载于:https://www.cnblogs.com/captain1/p/10373053.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值