前言:
本系列文章将会对有编程经验的跨语言编程爱好者提供, 而来也是为了自己熟悉这门语言做下笔记。 所需了解的内容, 基础语法应用、迭代器, 常见数据结构, 面向对象编程, 少量设计模式等。
第一弹内容:
安装python
这里有一千种方法,从略, 但是本系列以python3 讲解。
了解数据类型和编码,输入输出
区分语言的运用,和基础数据类型的跨越, 输入输出(print . lable = input())
了解基础的内置数据结构
这里主要讲解tuple, list, set , dict, deque
基础数据结构无非就是对应到了(),[],{}即可。
元组直接用(),可以用其他数据结构直接嵌用。例如list()
list 为链表集合结构, 相当于Java 的ArrayList, C++的Vector。
set 无重集合结构。
dict 为字典结构, 对应Java的是Map。
##举例说明
>>>a = (1,2,3); type(a)
>>>b = tuple(a) ; type(b)
>>>c = set(1,1,2,3,4);type(c)
>>>d = {'Name':;'Actanble', 'IQ':223};type(d)
##表示方法有很多种,以后用到了再说明。
简单的高级特性
##切片 ::就是取其中的一部分元素 [start :end]的功能
##迭代 :: 雷速于java的迭代器功能后的加强for循环
for i in range(10):
print (2*i)
##列表生成式
l = [2*i for i in range(10) if(i>4)]
print (i) ##输出符合条件i的列表推导式
##生成器 :: 只会操作到开始一部分元素的一个生成器
g = (x * x for x in range(10))
while(1):
print (next(g))
###应用2
def fib(max):
n, a, b = 0, 0, 1
while(n < max):
print(b)
a, b = b, a + b
n = n + 1
return 'complete'
#####当然fib 可以直接用递归返回, 或者用另外一个数组存储返回即可。 [].append()
##迭代器
##可迭代对象既是实现了 iterable借口的对象, 例如集合, string 等。
from collections import Iterable
print(isinstance(100, Iterable)) ##是不是迭代类型, instance(110,int)是不是整形。
#同样 isinstance(iter([]), Iterator)判断是不是迭代器类型
函数式编程
简而言之就是利用指针特性完成函数相关性能的相关编程。
map 和 reduce , 简易lamda应用
yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator
f = abs
def add(x, y, f):
return f(x) + f(y)
print(add(2,3,f))
##map单元映射
def g(x):
return x^2 + x -1
r = map(g, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print (r)
##reduce 应用
from functools import reduce
def char2num(s):
return {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}[s]
def str2int(s):
return reduce(lambda x, y: x * 10 + y, map(char2num, s))
fiter 综合练习
def _odd_iter():
n = 1
while True:
n = n + 2
yield n
def _not_divisible(n):##定义一个筛选函数:
return lambda x: x % n > 0
def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列
# 打印1000以内的素数:
for n in primes():
if n < 1000:
print(n)
else:
break
## 其实 l = [2*i + 1 for i in range(max/2+1)] 的即可, 但是了解这个过程中指针操作对象, 操作的是什么, 这个过程。
模块编程
自定义模块示例, 其他略
import sys
def test():
args = sys.argv
if len(args)==1:
print('Hello, world!')
elif len(args)==2:
print('Hello, %s!' % args[1])
else:
print('Too many arguments!')
if __name__=='__main__':
test()
另外第三方模块只是看做一个大类的集合即可即可, 后面经常用到不加赘述
比如以前我的博客中经常用到 numpy, os, pandas , scanpy, bootstrap, request等。都属于模块。
理解作用域的修饰符, xx ( public )和 _x(pravete); oop编程再详解。此处略, 补上一个简单的应用举例, 模块内部调用。
def _private(name):
return 'Hello, %s' % name
def _private_2(name):
return 'Hi, %s' % name
def greeting(name):
if len(name) > 3:
return _private(name)
else:
return _private_2(name)
后记
关于python基础要是有C++或者Java基础都会很容易理解, 其中只要是指针的操作和高级特性麻烦一点, 但是也都不难理解, 第二代将会全面展开面向对象编程, 封装、继承、多态。 另外再补上 IO 和 正则表达式,
第二弹内容
面向对象
第三弹内容
IO, 线程进程、错误调试、
正则, 常用内建模块(相当于了解api, Java的常见类学习)
第四弹
编程技术升级: 网络编程、web开发、访问数据库、SMTP协议的邮件收发、异步IO。