2014.06.15 16:22
简介:
AVL树是一种高度平衡的二叉搜索树,其命名源自于联合发明算法的三位科学家的名字的首字母。此处“平衡”的定义是:任意节点的左右子树的高度相差不超过1。有了这个平衡的性质,使得AVL树的高度H总是接近log(N),因此各种增删改查的操作的复杂度能够保证在对数级别。没有bad case是AVL树与普通的二叉搜索树的最大区别。为了实现平衡性质,我们需要记录每个节点的高度(或者平衡因子)来检测不平衡的情况。为了修正高度不平衡,需要用到“旋转”的方法,分为单旋转和双旋转,左右总共四种旋转。下面的图解会给出旋转的示意,这个是AVL树的关键算法。AVL树看起来特简单,但你动手写写就知实现一棵AVL树有多麻烦。如果你能用200行写出能增删改查的AVL树,请留言给我点提示。我花了一天想思路,并犹豫要不要放弃。又花了一天写代码和自测。终于用500多行代码写完了自己的第一棵AVL树。如果面试里需要平衡查找结构,你最好试试树堆或者跳表,千万别想AVL或者伸展树。不需要自己写的话,还是<map>吧。
图示:
一棵平衡的二叉树:
查找不涉及数据的修改,因此和普通二叉搜索树完全一样:
插入21之后,树的平衡被破坏了,而且不止一个点出现了不平衡:
当平衡被破坏之后,需要从第一个不平衡的地方开始旋转,然后逐层往上继续修正。此处给出一次旋转之后的结果:
一次旋转不一定能修复N个不平衡的节点,因此要从第一个不平衡的节点往上检查所有需要修复的节点。
下面给出四种旋转的示意图,代码的注释中也有类似的示意,以便读者能够直观地想象旋转中发生的变形(数据结构最大的魅力,就在于它们动起来比变形金刚的花样还多)。
左单旋转:
右单旋转:
左右双旋转:
右左双旋转:
实现:
为了向上检查,我引入了parent指针指向二叉树节点的父节点。为了检查平衡状况,我是用了height成员表示树的高度。虽然平衡因子好像更规范,但当时尝试用平衡因子的时候思路始终理不清楚,所以选择了高度作为依据。下面的实现中其实有不少代码是供测试用的,比如三种遍历。这些debug代码对于学习AVL树有帮助作用,如果你有兴趣可以自己运行查看结果。
插入和删除都会影响树的平衡性,因此对于发生变动的节点,需要更新其高度,以便检测平衡性并进行旋转。AVL树的删除挺难想的,需要在草稿纸上比划半天才能想明白。
请看代码。
1 // My implementation for avl tree. 2 #include <iostream> 3 #include <string> 4 #include <vector> 5 using namespace std; 6 7 struct TreeNode { 8 int val; 9 int height; 10 TreeNode *left; 11 TreeNode *right; 12 TreeNode *parent; 13 TreeNode(int _val): val(_val), height(1), left(nullptr), right(nullptr), parent(nullptr) {}; 14 }; 15 16 class AVLTree { 17 public: 18 AVLTree() { 19 m_root = nullptr; 20 } 21 22 bool empty() { 23 return m_root == nullptr; 24 } 25 26 void clear() { 27 _deleteTree(m_root); 28 } 29 30 void insertNode(const int &val) { 31 if (m_root == nullptr) { 32 m_root = new TreeNode(val); 33 return; 34 } 35 36 TreeNode *ptr = _findNode(val); 37 38 if (val == ptr->val) { 39 return; 40 } 41 42 if (val < ptr->val) { 43 ptr->left = new TreeNode(val); 44 ptr->left->parent = ptr; 45 } else if (val > ptr->val) { 46 ptr->right = new TreeNode(val); 47 ptr->right->parent = ptr; 48 } 49 50 int hl, hr; 51 TreeNode *ptr2; 52 while (ptr != nullptr) { 53 ptr2 = ptr->parent; 54 _getHeight(ptr); 55 hl = _height(ptr->left); 56 hr = _height(ptr->right); 57 switch(hl - hr) { 58 case -2: 59 switch (_height(ptr->right->left) - _height(ptr->right->right)) { 60 case -1: 61 _singleRotationRight(ptr); 62 break; 63 case +1: 64 _doubleRotationRightLeft(ptr); 65 break; 66 } 67 break; 68 case +2: 69 switch (_height(ptr->left->left) - _height(ptr->left->right)) { 70 case -1: 71 _doubleRotationLeftRight(ptr); 72 break; 73 case +1: 74 _singleRotationLeft(ptr); 75 break; 76 } 77 break; 78 } 79 ptr = ptr2; 80 } 81 } 82 83 void deleteNode(const int &val) { 84 if (m_root == nullptr) { 85 return; 86 } 87 88 TreeNode *par, *cur; 89 90 cur = _findNode(val); 91 if (cur == nullptr || cur->val != val) { 92 return; 93 } 94 par = cur->parent; 95 96 TreeNode *ptr; 97 do { 98 if (cur->left != nullptr) { 99 ptr = _shiftLeft(cur); 100 break; 101 } 102 103 if (cur->right != nullptr) { 104 ptr = _shiftRight(cur); 105 break; 106 } 107 108 if (par == nullptr) { 109 delete cur; 110 m_root = nullptr; 111 } else if (val < par->val) { 112 delete cur; 113 par->left = nullptr; 114 } else { 115 delete cur; 116 par->right = nullptr; 117 } 118 ptr = par; 119 } while (0); 120 121 int hl, hr; 122 TreeNode *ptr2; 123 while (ptr != nullptr) { 124 ptr2 = ptr->parent; 125 _getHeight(ptr); 126 hl = _height(ptr->left); 127 hr = _height(ptr->right); 128 switch(hl - hr) { 129 case -2: 130 switch (_height(ptr->right->left) - _height(ptr->right->right)) { 131 case -1: 132 _singleRotationRight(ptr); 133 break; 134 case +1: 135 _doubleRotationRightLeft(ptr); 136 break; 137 } 138 break; 139 case +2: 140 switch (_height(ptr->left->left) - _height(ptr->left->right)) { 141 case -1: 142 _doubleRotationLeftRight(ptr); 143 break; 144 case +1: 145 _singleRotationLeft(ptr); 146 break; 147 } 148 break; 149 } 150 ptr = ptr2; 151 } 152 } 153 154 void updateNode(const int &old_val, const int &new_val) { 155 deleteNode(old_val); 156 insertNode(new_val); 157 } 158 159 bool contains(const int &val) { 160 TreeNode *ptr = _findNode(val); 161 return ptr == nullptr ? false : ptr->val == val ? true : false; 162 } 163 164 string preorderTraversal() { 165 string result; 166 _preorderTraversalRecursive(m_root, result); 167 return result; 168 } 169 170 string inorderTraversal() { 171 string result; 172 _inorderTraversalRecursive(m_root, result); 173 return result; 174 } 175 176 string postorderTraversal() { 177 string result; 178 _postorderTraversalRecursive(m_root, result); 179 return result; 180 } 181 182 ~AVLTree() { 183 clear(); 184 } 185 private: 186 TreeNode *m_root; 187 188 void _deleteTree(TreeNode *&root) { 189 if (root == nullptr) { 190 return; 191 } 192 _deleteTree(root->left); 193 _deleteTree(root->right); 194 delete root; 195 root = nullptr; 196 } 197 198 TreeNode* _findNode(const int &val) { 199 TreeNode *ptr; 200 201 ptr = m_root; 202 while (ptr != nullptr) { 203 if (val == ptr->val) { 204 return ptr; 205 } 206 if (val < ptr->val) { 207 if (ptr->left != nullptr) { 208 ptr = ptr->left; 209 } else { 210 return ptr; 211 } 212 } else { 213 if (ptr->right != nullptr) { 214 ptr = ptr->right; 215 } else { 216 return ptr; 217 } 218 } 219 } 220 return ptr; 221 } 222 223 void _preorderTraversalRecursive(const TreeNode *root, string &result) { 224 result.push_back('{'); 225 if (root == nullptr) { 226 // '#' represents NULL. 227 result.push_back('#'); 228 } else { 229 result.append(to_string(root->val)); 230 _preorderTraversalRecursive(root->left, result); 231 _preorderTraversalRecursive(root->right, result); 232 } 233 result.push_back('}'); 234 } 235 236 void _inorderTraversalRecursive(const TreeNode *root, string &result) { 237 result.push_back('{'); 238 if (root == nullptr) { 239 // '#' represents NULL. 240 result.push_back('#'); 241 } else { 242 _inorderTraversalRecursive(root->left, result); 243 result.append(to_string(root->val)); 244 _inorderTraversalRecursive(root->right, result); 245 } 246 result.push_back('}'); 247 } 248 249 void _postorderTraversalRecursive(const TreeNode *root, string &result) { 250 result.push_back('{'); 251 if (root == nullptr) { 252 // '#' represents NULL. 253 result.push_back('#'); 254 } else { 255 _postorderTraversalRecursive(root->left, result); 256 _postorderTraversalRecursive(root->right, result); 257 result.append(to_string(root->val)); 258 } 259 result.push_back('}'); 260 } 261 262 TreeNode *_shiftLeft(TreeNode *root) { 263 TreeNode *cur, *par; 264 265 // root and root->left is guaranteed to be non-empty. 266 par = root; 267 cur = par->left; 268 269 while (cur->right != nullptr) { 270 par = cur; 271 cur = cur->right; 272 } 273 root->val = cur->val; 274 275 if (cur->left != nullptr) { 276 return _shiftLeft(cur); 277 } 278 279 if (cur->right != nullptr) { 280 return _shiftRight(cur); 281 } 282 283 if (cur == par->left) { 284 delete par->left; 285 par->left = nullptr; 286 } else { 287 delete par->right; 288 par->right = nullptr; 289 } 290 291 return par; 292 } 293 294 TreeNode *_shiftRight(TreeNode *root) { 295 TreeNode *cur, *par; 296 297 // root and root->right is guaranteed to be non-empty. 298 par = root; 299 cur = par->right; 300 301 while (cur->left != nullptr) { 302 par = cur; 303 cur = cur->left; 304 } 305 root->val = cur->val; 306 307 if (cur->left != nullptr) { 308 return _shiftLeft(cur); 309 } 310 311 if (cur->right != nullptr) { 312 return _shiftRight(cur); 313 } 314 315 if (cur == par->left) { 316 delete par->left; 317 par->left = nullptr; 318 } else { 319 delete par->right; 320 par->right = nullptr; 321 } 322 323 return par; 324 } 325 326 int _max(const int &x, const int &y) { 327 return x > y ? x : y; 328 } 329 330 int _height(const TreeNode *ptr) { 331 return ptr == nullptr ? 0 : ptr->height; 332 } 333 334 void _getHeight(TreeNode *ptr) { 335 if (ptr == nullptr) { 336 return; 337 } 338 ptr->height = _max(_height(ptr->left), _height(ptr->right)) + 1; 339 } 340 341 void _singleRotationLeft(TreeNode *cur) { 342 // Subtree A is deeper than subtree B. 343 // Before rotation: 344 // X 345 // / \ 346 // Y C 347 // / \ 348 // A B 349 // ---------- 350 // After rotation: 351 // Y 352 // / \ 353 // A X 354 // / \ 355 // B C 356 TreeNode *par = cur->parent; 357 TreeNode *B; 358 TreeNode *X, *Y; 359 360 X = cur; 361 Y = cur->left; 362 B = Y->right; 363 364 Y->right = X; 365 X->parent = Y; 366 X->left = B; 367 if (B != nullptr) { 368 B->parent = Y; 369 } 370 371 if (par == nullptr) { 372 m_root = Y; 373 } else if (par->left == cur) { 374 par->left = Y; 375 } else { 376 par->right = Y; 377 } 378 Y->parent = par; 379 380 _getHeight(X); 381 _getHeight(Y); 382 _getHeight(par); 383 } 384 385 void _singleRotationRight(TreeNode *cur) { 386 // Subtree C is deeper than subtree B. 387 // Before rotation: 388 // X 389 // / \ 390 // A Y 391 // / \ 392 // B C 393 // ---------- 394 // After rotation: 395 // Y 396 // / \ 397 // X C 398 // / \ 399 // A B 400 TreeNode *par = cur->parent; 401 TreeNode *B; 402 TreeNode *X, *Y; 403 404 X = cur; 405 Y = cur->right; 406 B = Y->left; 407 408 Y->left = X; 409 X->parent = Y; 410 X->right = B; 411 if (B != nullptr) { 412 B->parent = X; 413 } 414 415 if (par == nullptr) { 416 m_root = Y; 417 } else if (par->left == cur) { 418 par->left = Y; 419 } else { 420 par->right = Y; 421 } 422 Y->parent = par; 423 424 _getHeight(X); 425 _getHeight(Y); 426 _getHeight(par); 427 } 428 429 void _doubleRotationLeftRight(TreeNode *cur) { 430 // Subtree Z is deeper than subtree A. Single rotation won't work, so let's use this one instead. 431 // Before rotation: 432 // X 433 // / \ 434 // Y D 435 // / \ 436 // A Z 437 // / \ 438 // B C 439 // ---------- 440 // After rotation: 441 // Z 442 // / \ 443 // Y X 444 // / \ / \ 445 // A B C D 446 TreeNode *par = cur->parent; 447 TreeNode *B, *C; 448 TreeNode *X, *Y, *Z; 449 450 X = cur; 451 Y = X->left; 452 Z = Y->right; 453 B = Z->left; 454 C = Z->right; 455 456 Z->left = Y; 457 Y->parent = Z; 458 Z->right = X; 459 X->parent = Z; 460 Y->right = B; 461 if (B != nullptr) { 462 B->parent = X; 463 } 464 X->left = C; 465 if (C != nullptr) { 466 C->parent = X; 467 } 468 469 if (par == nullptr) { 470 m_root = Z; 471 } else if (par->left == cur) { 472 par->left = Z; 473 } else { 474 par->right = Z; 475 } 476 Z->parent = par; 477 478 _getHeight(X); 479 _getHeight(Y); 480 _getHeight(Z); 481 _getHeight(par); 482 } 483 484 void _doubleRotationRightLeft(TreeNode *cur) { 485 // Subtree Z is deeper than subtree D. Single rotation won't work, so let's use this one instead. 486 // Before rotation: 487 // X 488 // / \ 489 // A Y 490 // / \ 491 // Z D 492 // / \ 493 // B C 494 // ---------- 495 // After rotation: 496 // Z 497 // / \ 498 // X Y 499 // / \ / \ 500 // A B C D 501 TreeNode *par = cur->parent; 502 TreeNode *B, *C; 503 TreeNode *X, *Y, *Z; 504 505 X = cur; 506 Y = X->right; 507 Z = Y->left; 508 B = Z->left; 509 C = Z->right; 510 511 Z->left = X; 512 X->parent = Z; 513 Z->right = Y; 514 Y->parent = Z; 515 X->right = B; 516 if (B != nullptr) { 517 B->parent = X; 518 } 519 Y->left = C; 520 if (C != nullptr) { 521 C->parent = Y; 522 } 523 524 if (par == nullptr) { 525 m_root = Z; 526 } else if (par->left == cur) { 527 par->left = Z; 528 } else { 529 par->right = Z; 530 } 531 Z->parent = par; 532 533 _getHeight(X); 534 _getHeight(Y); 535 _getHeight(Z); 536 _getHeight(par); 537 } 538 }; 539 540 int main() 541 { 542 AVLTree avl; 543 544 // test for single rotation 545 avl.insertNode(1); 546 cout << avl.preorderTraversal() << endl; 547 avl.insertNode(2); 548 cout << avl.preorderTraversal() << endl; 549 avl.insertNode(3); 550 cout << avl.preorderTraversal() << endl; 551 avl.insertNode(4); 552 cout << avl.preorderTraversal() << endl; 553 avl.insertNode(5); 554 cout << avl.preorderTraversal() << endl; 555 avl.insertNode(6); 556 cout << avl.preorderTraversal() << endl; 557 avl.insertNode(7); 558 cout << avl.preorderTraversal() << endl; 559 avl.insertNode(8); 560 cout << avl.preorderTraversal() << endl; 561 avl.insertNode(9); 562 cout << avl.preorderTraversal() << endl; 563 cout << endl; 564 565 // test for double rotation 566 avl.clear(); 567 avl.insertNode(3); 568 cout << avl.preorderTraversal() << endl; 569 avl.insertNode(1); 570 cout << avl.preorderTraversal() << endl; 571 avl.insertNode(2); 572 cout << avl.preorderTraversal() << endl; 573 cout << endl; 574 575 // test for deletion, left 576 avl.clear(); 577 avl.insertNode(3); 578 cout << avl.preorderTraversal() << endl; 579 avl.insertNode(2); 580 cout << avl.preorderTraversal() << endl; 581 avl.insertNode(4); 582 cout << avl.preorderTraversal() << endl; 583 avl.insertNode(1); 584 cout << avl.preorderTraversal() << endl; 585 avl.deleteNode(3); 586 cout << avl.preorderTraversal() << endl; 587 avl.deleteNode(2); 588 cout << avl.preorderTraversal() << endl; 589 avl.deleteNode(4); 590 cout << avl.preorderTraversal() << endl; 591 cout << endl; 592 593 // test for deletion, right 594 avl.clear(); 595 avl.insertNode(2); 596 cout << avl.preorderTraversal() << endl; 597 avl.insertNode(1); 598 cout << avl.preorderTraversal() << endl; 599 avl.insertNode(3); 600 cout << avl.preorderTraversal() << endl; 601 avl.insertNode(4); 602 cout << avl.preorderTraversal() << endl; 603 avl.deleteNode(2); 604 cout << avl.preorderTraversal() << endl; 605 avl.deleteNode(1); 606 cout << avl.preorderTraversal() << endl; 607 avl.deleteNode(3); 608 cout << avl.preorderTraversal() << endl; 609 cout << endl; 610 611 return 0; 612 }