图论 竞赛图(tournament)学习笔记

竞赛图(tournament)学习笔记

现在只是知道几个简单的性质。。。

竞赛图也叫有向完全图。

其实就是无向完全图的边有了方向。

​ 有一个很有趣的性质就是:一个tournament要么没有环,如果有环,那么必然有一个三元环。当然,tournament一定没有自环和二元环。

​ 证明的话,开始吧,,

​ 首先我们假定当前的tournament存在一个N元环,那么我们设A,B,C为这个N元环上连续的三个点,那么就会存在AB和BC两条边,又因为是竞赛图,所以一定会存在AC或者CA两者中的一条边。

​ 又可以开始开心地分情况讨论了:

​ (一),存在CA边,那么很开心,我们已经找到了三元环ABC。

​ (二),存在AC边,那么我们就会发现B这个点是没有用的了,比如这样:
1503009-20181105184219745-553180732.png

那么我们就可以把一个N元环变成N-1元环了。

那么就一定会缩小到3元环了。

上述性质例题:

CF117C Cycle

一个tournament是一个没有自环的有向图,同时,每两个点之间有一条边连接。这就是说,对于两个点u,v(u≠v),有一条从u到v的边或一条从v到u的边。

给你一个tournament,请找出一个长度为3的环。

直接按照上述性质模拟就好了。

code:

#include <iostream>
#include <cstdio>

using namespace std;

const int wx=5017;

inline int read(){
    int sum=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
    return sum*f;
}

char s[wx][wx];
int vis[wx];
int n;

bool dfs(int u,int fa){
    vis[u]=1;
    for(int i=1;i<=n;i++){
        if(s[u][i]-'0'){
            if(s[i][fa]-'0'){
                printf("%d %d %d\n",fa,u,i);
                return true;
            }
            if(!vis[i])if(dfs(i,u))return true;
        }
    }
    return false;
}

int main(){
    n=read();
    for(int i=1;i<=n;i++)
        scanf("%s",s[i]+1);
    int fl=0;
    for(int i=1;i<=n;i++)
        if(!vis[i])
            if(dfs(i,i))return 0;;
    puts("-1");
    return 0;
}

关于其他性质:

1:任意竞赛图都有哈密顿路径(经过每个点一次的路径,不要求回到出发点)。

2:竞赛图存在哈密顿回路的充要条件是强联通。

先留坑。

转载于:https://www.cnblogs.com/wangxiaodai/p/9910741.html

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值