caffe protobuf详解

solver各参数的用途

#往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。
#caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

Stochastic Gradient Descent (type: "SGD"),
AdaDelta (type: "AdaDelta"),
Adaptive Gradient (type: "AdaGrad"),
Adam (type: "Adam"),
Nesterov’s Accelerated Gradient (type: "Nesterov") and
RMSprop (type: "RMSProp")


net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 3000
snapshot: 500
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

net: "examples/mnist/lenet_train_test.prototxt" #网络位置
train_net: "examples/hdf5_classification/logreg_auto_train.prototxt" #也可以分别设定train和test
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

test_iter: 100 #迭代了多少个测试样本呢? batch*test_iter 假设有5000个测试样本,一次测试想跑遍这5000个则需要设置test_iter×batch=5000,如果你的gpu显存是3g的,那batchsize可以设置为64,8g的可以设置为128。

test_interval: 500 #测试间隔。也就是每训练500次,才进行一次测试。


base_lr: 0.01 #base_lr用于设置基础学习率

lr_policy: "inv" #学习率调整的策略

- fixed:   保持base_lr不变.
- step:    如果设置为step,则还需要设置一个stepsize, 返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
- exp:   返回base_lr * gamma ^ iter, iter为当前迭代次数
- inv:   如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
- multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据 stepvalue值变化
- poly:    学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
- sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

momentum :0.9 #动量

display: 100 #每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 3000 #最大迭代次数,2W次就停止了

snapshot: 500 #快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,我一般设置为max_iter/10,多保存几个model
snapshot_prefix: "examples/mnist/lenet"

solver_mode: CPU #设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

python接口生成solver

#!/usr/bin/python
# -*- coding: utf-8 -*-

from caffe.proto import caffe_pb2
s = caffe_pb2.SolverParameter()

#typelist = ['SGD','AdaDelta','AdaGrad','Adam','Nesterov','RMSProp']
#lrlist = ['inv','fixed','step','exp','multistep','poly','sigmoid']

path='/home/xxx/data/'
solver_file=path+'solver1.prototxt'

s.train_net = path+'train.prototxt'
s.test_net.append(path+'val.prototxt')
s.test_interval = 500  
s.test_iter.append(100) 
s.max_iter = 100000 

s.base_lr = 0.001 
s.momentum = 0.9
s.weight_decay = 5e-4
s.lr_policy = 'step'
s.stepsize=26067
s.gamma = 0.1
s.display = 1000
s.snapshot = 10000
s.snapshot_prefix = 'shapshot'


s.type = “SGD”
s.solver_mode = caffe_pb2.SolverParameter.GPU

with open(solver_file, 'w') as f:
    f.write(str(s))

 

 

 

1.数据层

 

layer {
  name: "cifar"
  type: "Data"
  top: "data" #一般用bottom表示输入,top表示输出,多个top代表有多个输出
  top: "label"
  include {
  phase: TRAIN #训练网络分为训练阶段和自测试阶段,如果没写include则表示该层即在测试中,又在训练中
  }
  transform_param {
  mean_file: "examples/cifar10/mean.binaryproto" #用一个配置文件来进行均值的操作
  transform_param {
  scale: 0.00390625
  mirror: 1 # 1表示开启镜像,0表示关闭,也可用ture和false来表示
  # 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
  crop_size: 227
  }
  }
  data_param {
  source: "examples/cifar10/cifar10_train_lmdb" #数据库来源
  batch_size: 64 #每次批处理的个数
  backend: LMDB #选用数据的名称
  }
}

### 使用LMDB源
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
  phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
  source: "examples/mnist/mnist_train_lmdb"
  batch_size: 64
  backend: LMDB
}
}

###使用HDF5数据源
layer {
  name: "data"
  type: "HDF5Data"
  top: "data"
  top: "label"
  hdf5_data_param {
  source: "examples/hdf5_classification/data/train.txt"
  batch_size: 10
  }
}

###数据直接来源与图片
#/path/to/images/img3423.jpg 2
#/path/to/images/img3424.jpg 13
#/path/to/images/img3425.jpg 8

layer {
  name: "data"
  type: "ImageData" #类型
  top: "data"
  top: "label"
  transform_param {
  mirror: false
  crop_size: 227
  mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
image_data_param {
  source: "examples/_temp/file_list.txt"
  batch_size: 50
  new_height: 256 #如果设置就对图片进行resize操作
  new_width: 256
}
}

2.卷积层

 

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
  lr_mult: 1 #lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
  }
  param {
  lr_mult: 2
  }
convolution_param {
  num_output: 20 #卷积核(filter)的个数
  kernel_size: 5 #卷积核的大小
  stride: 1 #卷积核的步长,默认为1
  pad: 0 #扩充边缘,默认为0,不扩充
  weight_filler {
  type: "xavier" #权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
  }
  bias_filler {
  type: "constant" #偏置项的初始化。一般设置为"constant",值全为0
  }
}
}

输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
w1=(w0+2*pad-kernel_size)/stride+1;
h1=(h0+2*pad-kernel_size)/stride+1;

3.池化层

 

 

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
  pool: MAX #池化方法,默认为MAX。目前可用的方法有MAX, AVE
  kernel_size: 3 #池化的核大小
  stride: 2 #池化的步长,默认为1。一般我们设置为2,即不重叠。
  }
}

#pooling层的运算方法基本是和卷积层是一样的。

 

4.激活函数

 

#在激活层中,对输入数据进行激活操作,是逐元素进行运算的,在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

#ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。标准的ReLU函数为max(x, 0),当x>0时,输出x; 当x<=0时,输出0
f(x)=max(x,0)

 

layer {
  name: "relu1"
  type: "ReLU"
  bottom: "pool1"
  top: "pool1"
}

 5.全连接层

 

 

#全连接层,输出的是一个简单向量 参数跟卷积层一样
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
  lr_mult: 1
  }
  param {
  lr_mult: 2
  }
  inner_product_param {
  num_output: 500
  weight_filler {
  type: "xavier"
  }
  bias_filler {
  type: "constant"
  }
  }
}
#测试的时候输入准确率
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
  phase: TEST
  }
}

 

import sys
caffe_root='/home/tyd/caffe/'
sys.path.insert(0, caffe_root+'python')
from caffe import layers as L
from caffe import params as P
import caffe

def lenet(lmdb, batch_size):
    # our version of LeNet: a series of linear and simple nonlinear transformations
    n = caffe.NetSpec()
    n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
                             transform_param=dict(scale=1./255), ntop=2)
    n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
    n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
    n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.ip1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
    n.relu1 = L.ReLU(n.ip1, in_place=True)
    n.ip2 = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
    n.loss = L.SoftmaxWithLoss(n.ip2, n.label)
    return n.to_proto()

with open('lenet_auto_train.prototxt', 'w') as f:
    f.write(str(lenet('examples/mnist/mnist_train_lmdb', 64)))

with open('lenet_auto_test.prototxt', 'w') as f:
    f.write(str(lenet('examples/mnist/mnist_test_lmdb', 100)))

  

转载于:https://www.cnblogs.com/HugoLester/p/6633898.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值