超算系统重要节点目录的备份

本文介绍了超级计算机中关键节点的备份策略,特别是针对lsf作业调度系统节点、NIS服务节点及并行存储MGR节点的备份方法。通过定时计划任务实现对重要目录的备份,确保系统的稳定运行。

超算上一些重要角色节点:

node100 node101   (lsf作业调度系统节点,和PAC网站页面管理)

node108 node105  (NIS服务主从节点)

node166               (parastor并行存储 MGR节点)

 

备份策略:备份可以通过定时计划任务 /etc/crontab 来进行备份,备份到/home目录,也即是备份到存储目录;

1 对node108节点的/etc /opt /root等重要目录进行备份:

 * 3 * * 6  root tar -zcPf  /home/public/node108.`data+\%Y\%m\%d`.etc.tar.gz      /etc   (备份/etc目录)

 * 4 * * 6  root tar -zcPf /home/public/node108.`data+\%Y\%m\%d`.opt.tar.gz     /opt   (备份/opt目录)

*  5  * * 6 root tar -zcPf /home/public/node108.`data+\%Y\%m\%d`. root.tar.gz  /root    (备份/root目录)

 

其他节点备份也和node108节点一样进行备份;

转载于:https://www.cnblogs.com/wangnengwu/p/5685879.html

<think> 嗯,用户这次想获取适合个人学习超算的平台推荐。结合对话历史和提供的引用资料,用户应该是个刚开始接触超算的学生或自学者,需要实际可操作的资源。 注意到用户前两次提问都聚焦在超算平台的功能特性(如模型部署、资源调度),这次转向实操层面,说明ta可能完成了理论学习阶段,准备动手实践。不过个人使用超算确实存在门槛,需要重点推荐那些对初学者友好的平台。 从引用[3]华科超算手册看,高校超算平台通常有环境配置限制(如conda环境锁定),这对新手不太友好。但国内部分超算中心的教育版反而更合适,像鹏城云脑的轻量级容器服务就解决了环境隔离问题。 国外资源方面,引用[2]提到的Linux超算搭建教程很有价值,但用户可能需要更多现成资源。AWS Educate和谷歌Cloud的学术计划应该优先推荐,因为它们的免费额度足够运行MPI基础实验。 用户没提具体学习方向,所以推荐要覆盖全面些: - 并行编程练习首选SageMaker Lab(集成MPICH) - AI模型实验用百度昆仑芯开发板(国产化适配) - 想体验真实超算环境可试试芬兰CSC的MyCuda(引用[1]提到的异构计算案例) 特别要提醒权限问题。引用[3]的例子说明新手常卡在环境配置,建议明确标注各平台的权限规则(如哪些支持sudo,哪些必须用容器)。 最后生成的问题要引导用户细化需求,毕竟“学习超算”可能指体系结构、并行计算或AI训练等不同方向。 </think> 根据你的学习需求,以下是适合个人学习超算的推荐平台及使用指南,结合实践场景和资源特点整理: --- ### **一、国内免费/教育版超算平台** 1. **国家超算中心教育版** - **推荐平台**:深圳鹏城云脑([鹏城实验室](https://www.pcl.ac.cn/))、无锡国家超算中心教育通道 - **特点**: - 提供CPU/GPU混合计算资源,支持MPI并行编程、AI模型训练[^1] - 集成Jupyter Lab环境(参考引用[3]),可直接运行Python科学计算 - **学习门槛**:需提交学生身份认证,审核通过后分配免费计算额度 - **适用场景**:并行算法验证、中小规模深度学习训练 2. **高校开放超算平台** - **案例**: - 华中科技大学超算平台(参考引用[3]):提供Slurm作业调度系统,支持Conda环境自定义 - 上海交通大学“思源一号”教育专区 - **操作要点**: - 需使用`module load`加载环境(如GCC, OpenMPI) - 避免直接修改预设环境,通过`conda create -n myenv`创建独立环境解决权限问题[^3] --- ### **二、国际免费学术资源** 1. **AWS Educate / Google Cloud Research Credits** - 提供$100-$300免费云算力,可部署Slurm集群 - 适合练习超算集群搭建(参考引用[2]的Linux超算配置) 2. **EUROLAB-4 Virtual Access**(欧洲超算联盟) - 开放LUMI超算教育容器,预装OpenMPI、HPL基准测试工具 - 支持通过SSH连接运行分布式计算任务 --- ### **三、本地模拟学习方案** #### ▶ **单机模拟超算集群** ```bash # 使用Docker部署多节点MPI集群(需安装Docker Engine) $ docker run -it --name node1 ubuntu:20.04 $ docker run -it --name node2 ubuntu:20.04 # 配置SSH互信后运行MPI作业 $ mpirun -np 4 -host node1,node2 ./my_mpi_program ``` #### ▶ **轻量化工具链** | 工具 | 用途 | 学习项目示例 | |---------------|--------------------------|---------------------------| | **OpenMPI** | 消息传递接口 | 矩阵并行乘法 | | **Slurm** | 作业调度模拟 | 配置多用户任务队列 | | **GNU Parallel** | 单机多核并行 | 批量数据处理 | --- ### **四、学习路径建议** 1. **基础阶段** - 在本地Docker环境练习Linux操作和MPI编程 - 运行`HPL`(High Performance Linpack)基准测试[^2] 2. **进阶阶段** - 申请教育超算资源,提交Slurm作业脚本: ```bash #!/bin/bash #SBATCH --job-name=mpi_test #SBATCH --nodes=2 #SBATCH --ntasks-per-node=4 mpirun ./parallel_algorithm ``` 3. **实战阶段** - 在鹏城云脑运行AI训练(如PyTorch分布式训练) - 使用超算Jupyter分析科学数据集(参考引用[1][^3]) --- ### **注意事项** 1. **环境隔离** - 优先用Conda创建虚拟环境,避免依赖冲突(如引用[3]的PyTorch安装问题) 2. **资源申请** - 教育平台通常限制单任务GPU卡数(如≤4卡),需合理设计实验规模 3. **数据管理** - 超算平台通常不持久存储数据,定期用`rsync`备份结果到本地 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值