从代码库迁出代码 ---- pexpect 的使用
测试人员从代码库(例如 CVS )迁出代码的过程中,需要手动输入访问密码,而 Python 提供了 Pexpect 模块则能够将手动输入密码这一过程自动化。当然 Pexpect 也可以用来和 ssh、ftp、passwd、telnet 等命令行进行自动化交互。这里我们以 CVS 为例展示如何利用 Pexpect 从代码库迁出代码。
清单 1. 用 pexpect 迁出代码库代码
try: chkout_cmd = 'cvs co project_code' #从代码库迁出 project_code 的内容 child = pexpect.spawn(chkout_cmd) child.expect('password:') child.sendline('your-password') #请替换"your-password"为真实密码 child.interact() except: pass #忽略迁出代码中的错误
在清单 1 中,我们用命令"cvs co project_code"从代码库中迁出了 project_code 的内容,我们也可以用该命令来更新已经迁出的代码。只需要将命令"cvs update" 传给类 pexpect.spawn()即可,详细的实现请参考代码文件。这里 interact()函数是必须的,用来在交互的方式下控制该子进程。有时代码库中会存在目录不一致行情况,迁出代码会因报错终止,所以需要异常处理(try ... execpt)来忽略该错误。
编译代码和运行测试脚本 ---- subprocess 的使用
测试人员获取最新的代码之后,就要对源码进行编译,并且运行测试用例。Python 语言提供了多种方法如 os.system()/os.popen()来执行一条命令,这里我们推荐用 subprocess 模块来创建子进程,完成代码编译和运行测试用例。因为 subprocess 支持主进程和子进程的交互,同时也支持主进程和子进程是同步执行还是异步执行。由于本文中的各个功能模块有都先后依赖关系,所以全部采用的是主进程和子进程同步模式执行。
编译代码
清单 2. 用 subprocess 编译代码
build_cmd = 'build_command_for_your_code' #请在这里配置编译命令 build_proc = subprocess.Popen(build_cmd, stdin=None, stdout=None, stderr=None, shell=True) build_proc.wait() #等待子进程结束 assert (0 == build_proc.returncode)
在一些系统中我们编译代码采用的是脚本文件(如 shell 脚本),那么我们仍然可以如下命令来完成代码编译工作。
清单 3. 用 subprocess 的 call 函数执行脚本文件
subprocess.call(["code_compile.sh"])
运行测试脚本
在编译完成代码之后,我们同样可以调用 subprocess.Popen 来创建子进程运行测试用例。如果测试人员的测试用例已经写成了测试例脚本,我们则可以用 subprocess.call()来执行测试例脚本文件,代码实现就不再赘述。有些系统会直接把详细日志输出到屏幕上,那么我们可以用重定向命令"2>&1"把屏幕输出写文件。
清单 4. 用重定向命令把输出写文件
ut_cmd = 'Your_unit_test_command 2>&1 > %s' %self.debug_log #debug_log 定义在__init__函数中,用来存储详细日志
测试结果存储和发布 ---- XML 解析
我们的项目采用敏捷开发,为了更好的反应敏捷开发周期,我们希望存储日志的目录名不但能够指明的具体日期,同时也能反映敏捷(迭代)开发阶段,这样相关人员在查看相应目录中的日志时,能够清楚的明白日志实在在哪个迭代周期的哪一天产生的。本文使用文件 summary 作为运行测试用例后生成的汇总日志,用文件 log.txt 用来存储详细日志。如下图所示,在共享目录 SharedFiles 中存储了一些列迭代周期中的日志。
清单 5. 共享目录结构
SharedFiles ├── Sprint10-20130823121500 │ ├── log.txt │ └── summary ├── Sprint10-20130826152715 │ ├── log.txt │ └── summary ├── Sprint10-20130828165235
为了能够让目录名反映敏捷开发周期,我们需要自己定义一个配置文件(txt 或 xml 均可)。由于 Python 已经很好的支持了 XML 解析,并且 XML 文件作为配置也是当前的流行趋势。本文就以 XML 解析为例进行说明。本文使用的 XML 文件名是 Sprint.xml,清单 6 是该 xml 的概要内容
清单 6. Sprint.xml 文件结构
<sprint-schedule> <min-sprint>10</min-sprint> <max-sprint>20</max-sprint> <sprint10>20130814</sprint10> <sprint11>20130828</sprint11> … … <sprint19>20131218</sprint19> <sprint20>20140101</sprint20> </sprint-schedule>
关于 xml 解析 Python 提供了多种方法。本文采用 minidom 对 xml 文件进行解析,清单 7 是相关处理代码。
清单 7. xml 解析代码
cur_date = time.strftime('%Y%m%d%H%M%S', time.localtime(time.time())) # 首先获取当前系统日期 xmldoc = minidom.parse(xml_file) min_num_node = xmldoc.getElementsByTagName('min-sprint')[0] min_num = int(min_num_node.firstChild.data) #解析出迭代开发周期的起始周期 max_num_node = xmldoc.getElementsByTagName('max-sprint')[0] max_num = int(max_num_node.firstChild.data) #解析出迭代开发周期的终止周期 cur_num = min_num #遍历所有迭代周期,取出当前迭代周期的开始时间和当前的系统时间对比,从而确定当前位于哪一个迭代周期。 while cur_num <= max_num : node_name = 'sprint' + str(cur_num) cur_node = xmldoc.getElementsByTagName(node_name)[0] sprint_date = cur_node.firstChild.data if sprint_date < cur_date[0:7]: cur_num = cur_num + 1 else: break
这样 cur_num 就指向了当前的迭代开发周期。然后,我们就可以根据当前日期和开发阶段创建对应的日志目录名了,最后把运行结果存储到该目录下,参见清单 8 实现。
清单 8. 日志存储代码
log_dir = self.share_dir + '/Sprint' + str(cur_num) + '-' + cur_date #share_dir 为共享目录,定义在初始化函数中 os.mkdir(log_dir) os.system('mv %s %s' %(self.debug_fullname, log_dir)) #debug_fullname,详细日志文件名(含目录),定义在初始化函数中 os.system('mv %s %s' %(self.sum_fullname, log_dir)) #sum_fullname,汇总日志的全路径文件名,定义在初始化函数中
关于测试结果的发布,本文并没有把测试结果以自动化的形式发送邮件,而是手动在每个开发周期结束时,群发邮件给相关人员。或者在验证失败后,通知相关的开发人员,这是由于作者所在团队项目代码提交频率不是很高。在更大型的项目中,往往需要增加自动发送邮件的功能,相关实现本文不再赘述。
也谈界面设计 ---- getopt 的使用
在日常的测试过程中,我们并不是每次都要迁出代码,编译代码,运行测试用例和收集测试结果。这样就需要我们能够有选择的运行部分程序功能,例如只运行测试用例和收集结果。这里我们提供了 4 个运行选泽:
选项 1:迁出代码-->编译版本-->运行测试用例-->收集测试结果
选项 2:更新代码-->编译版本-->运行测试用例-->收集测试结果
选项 3:编译版本-->运行测试用例-->收集测试结果
选项 4:运行测试用例-->收集测试结果
当然我们还需要提供帮助信息,以方便不熟悉该脚本实现的人员使用。python 也提供了 getopt 模块让我们轻松实现上述功能。实现代码参见清单 9
清单 9. 命令行写解析代码
try: opts, args = getopt.getopt(sys.argv[1:], 'bchu', ['build', 'checkout', 'help', 'update']) except getopt.error, msg: self.usage() sys.exit(2) build_flag = 0 #构建选项 for o, a in opts: if o in ('-h', '--help'): self.usage() sys.exit() elif o in ('-c', '--checkout'): print "执行操作:迁出代码-->编译版本-->运行测试用例-->收集测试结果" build_flag = 1 break elif o in ('-u', '--update'): print "执行操作:更新代码-->编译版本-->运行测试用例-->收集测试结果" build_flag = 2 break elif o in ('-b', '--build'): print "执行操作:编译版本-->运行测试用例-->收集测试结果" build_flag = 3 break else: self.usage() sys.exit() if (0 == build_flag) : if 2 <= len(sys.argv): self.usage() sys.exit() raw_input('\n 按 Enter 键继续。。。(Ctrl+C 退出)\t') if (1 == build_flag) : #迁出代码,并编译代码 self.checkout_code() self.build_code() elif (2 == build_flag) : #更新代码,并编译代码 self.update_code() self.build_code() elif (3 == build_flag) : #编译代码 self.build_code() #运行测试用例并收集运行结果 self.set_python() self.run_testsuite() self.store_logs()
如果我们在运行的过程中想中断(如利用 Ctrl+C)一键回归测试进程的执行时,有时我们会发现虽然主进程已经被终止,但子进程仍在运行。我们能否在中断主进程的同时也中断子进程呢?答案当然是肯定的,我们可以用信号处理函数捕获信号(如捕获 Ctrl+C 产生的中断信号),然后在显式终止对应的子进程。这里就需要我们在创建子进程的时候,先保存子进程 ID,当然把子进程 ID 保存到初始化函数中,是个不错的选择,清单 10 是相关实现。
清单 10. 信号处理代码
# 终止子进程的运行 def handler(self, signum, frame): if (-1 != self.subproc_id) : #subproc_id 定义在初始化函数中,用来存储当前子进程的 ID os.killpg(self.subproc_id, signal.SIGINT) sys.exit(-1)
这里我们需要在初始化函数中注册要捕获的信号,并且创建成员变量用来保存子进程的 ID,详细实现请参见清单 11。
基于对象的设计 ---- class 的使用
最后终于轮到 class 登场了,提到 class 我们就不能不谈构造函数(初始化函数)和析构函数。之前我们多次提到初始化函数,初始化函数允许我们定义一些变量,这些变量在整个类对象的生存周期内均有效。由于本文没有向系统申请资源,就再不定义析构函数了。
清单 11. 初始化处理代码
def __init__(self): signal.signal(signal.SIGINT, self.handler) #注册需要捕获的信号量 self.myafs_dir = os.getenv('myafs') self.subproc_id = -1 #子进程 ID,用来在终止主进程时也同时终止子进程 self.debug_log = 'log.txt' #存储详细运行日志的文件名 self.debug_fullname = os.getcwd() + os.sep + self.debug_log #全路径文件名(假设产生在该目录下) self.sum_log = 'summary' #存储汇总日志的文件名 self.sum_fullname = os.getcwd() + os.sep + self.sum_log #全路径文件名(假设产生在当前目录下) self.share_dir = self.utafs_dir + '/SharedFiles' #共享目录文件名
通常我们不需要太关注设计风格,只要 Python 脚本能完成我们的测试要求即可。对于较小的脚本,几条 Python 指令顺序执行即可。为了模块功能复用和可读性,我们通常会把功能模块封装成函数。本文将实现的所有函数都封装到一个类中,使得该脚本更加一体化。
清单 12. class 框架结构代码
class COneClickRegTest: #设定一些经常使用的变量,如当前工作目录,日志名称、存储路径等 def __init__(self): #设定 python 环境变量,实现参见代码文件 def set_python(self): #更新代码,实现参见代码文件 def update_code(self): #迁出代码,实现参见第 2 章代码 def checkout_code(self): #编译版本,实现参见清单 1 代码 def build_code(self): #运行测试集,实现参见代码文件 def run_testsuite(self): #存储运行结果,实现参见清单 7 和清单 8 代码 def store_logs(self): #信号处理,实现参见清单 10 代码 def handler(self, signum, frame): #脚本使用说明,实现参见代码文件 def usage(self): #命令行解析以及执行对应的功能,实现参见清单 9 代码 def main(self):
结束语
Python 语言是一个易学易用的脚本语言,笔者没有多久的 Python 开发经验,不过其他语言有的功能在 Python 中大都可以找到对应的实现,这也是笔者能够在很短的时间内完成该测试脚本的原因。因此,笔者把该语言和使用该语言完成一键回归测试介绍给大家,希望对大家有所帮助。正像笔者说的其他语言有的功能在 Python 中大都可以找到对应的实现,同样,如果大家对某一种特定的脚本语言或者开发语言特别熟悉,也完全可以采用所熟悉的语言来完成一键回归测试的工作。