洛谷.3803.[模板]多项式乘法(NTT)

题目链接:洛谷LOJ.

为什么和那些差那么多啊。。

在这里记一下原根

Definition

  若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)\(a\)\(p\)的阶,记作\(\delta_p(a)\)
  例:\(\delta_7(2)=3\)

原根

  设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根。
  从另一方面来说,若\(g^i\ mod\ p\neq g^j\ mod\ p\ (p为质数,i\neq j且i,j\in\left[1,p-1\right])\),则\(g\)\(p\)的原根。

性质

  1. 若\(p\)有原根,那么\(p\)\(\varphi(\varphi(p))\)个原根。
  2. 有原根的数只有:\(2,4,p^n,2\times p^n\) (\(p\)为奇素数,\(n\)为正整数)。
  3. 一个数的最小原根的大小是\(O(n^{0.25})\)的。
  4. 若\(g\)\(p\)的原根,则\(g^a\)\(p\)的原根的充要条件为 \(a\)\(\varphi(p)\)互质。
  (参考抄自这儿

求法

  求\(p\)的原根:对\(\varphi(p)=p-1\)分解质因子,即令\(p-1=\prod_{i=1}^kp_i^{a_i}\ (p_i为质数)\)
  若\(g^{\frac{p-1}{p_i}}\neq 1\ (mod\ p)\)恒成立,则\(g\)\(p\)的一个原根。


#include <cstdio>
#include <cctype>
#include <algorithm>
#define P (998244353)
#define G (3)
#define inv_G (332748118)
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<21)+5;//2 097 152 //2e6+5;

int n,m,rev[N];
LL A[N],B[N],inv_lim;//全换成int好像大概略快吧 
char IN[MAXIN],*SS=IN,*TT=IN;

inline int read()
{
    register char c=gc();
    for(;!isdigit(c);c=gc());
    return c-'0';//233
}
inline LL FP(LL x,LL k)
{
    LL t=1;
    for(; k; k>>=1,x=x*x%P)
        if(k&1) t=t*x%P;
    return t;
}
void NTT(LL *a,int lim,int type)
{
    for(int i=0; i<lim; ++i)
        if(i<rev[i]) std::swap(a[i],a[rev[i]]);
    for(int i=2; i<=lim; i<<=1)
    {
        int mid=i>>1;
        LL Wn=FP(~type?G:inv_G,(P-1)/i),t,w;
        for(int j=0; j<lim; j+=i)
        {
            LL w=1;
            for(int k=0; k<mid; ++k, w=w*Wn%P)
                a[j+k+mid]=(a[j+k]-(t=w*a[j+k+mid]%P)+P)%P,
                a[j+k]=(a[j+k]+t)%P;
        }
    }
    if(type==-1) for(int i=0; i<lim; ++i) a[i]=a[i]*inv_lim%P;
}

int main()
{
    scanf("%d%d",&n,&m);//sb了拿那个read读n,m。。
    for(int i=0; i<=n; ++i) A[i]=read();//(read()%P+P)%P
    for(int i=0; i<=m; ++i) B[i]=read();
    int lim=1,len=0;
    while(lim<=n+m) lim<<=1,++len;
    inv_lim=FP(lim,P-2);
    for(int i=1; i<lim; ++i)
        rev[i] = (rev[i>>1]>>1) | ((i&1)<<len-1);
    NTT(A,lim,1), NTT(B,lim,1);
    for(int i=0; i<lim; ++i) A[i]=A[i]*B[i]%P;
    NTT(A,lim,-1);
    for(int i=0; i<=n+m; ++i) printf("%lld ",A[i]);

    return 0;
}

转载于:https://www.cnblogs.com/SovietPower/p/9153098.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值