Dijkstra经典算法注意点

Dijkstra经典算法注意点

前言

迪杰斯特拉算法,经典模板如下:

void dij(int s)
{
    for(int i=1; i<=n; i++)
        dis[i]=road[s][i];
    vis[s]=1;
    dis[s]=0; //这句话也可以不加
    for(int i=1; i<n; i++)
    {
        int tmp=inf, k;
        for(int j=1; j<=n; j++)
        {
            if(!vis[j] && dis[j] < tmp)
            {
                tmp=dis[j];
                k=j;
            }
        }
        vis[k]=1;
        for(int j=1; j<=n; j++)
        {
            if(!vis[j] && dis[j] > dis[k]+road[k][j])
            dis[j]=dis[k]+road[k][j];
        }
    }
}

偶然发现的问题——让我受益匪浅

迪杰斯特拉算法在最短路中的地位无可撼动,也是小白进阶过程中必学的算法之一。对于迪杰斯特拉的模板,网上可以说很多,但是笔者最近在做一道题时使用了Dijkstra算法,而且是最简单的那种,使用的代码就是上面那种,但是在输入数据时发生了错误,在评测时出现了Runtime Error(Access_Violation),我当时以为是数组发生了越界,但是看了看数据量,自己开大足够大啊,问题一点点逼近,最后调试发现一个”惊天“秘密。且看下面的代码:

const int inf=0x3f3f3f3f;
void dij(int s)
{
    for(int i=1; i<=n; i++)
        dis[i]=road[s][i];
    vis[s]=1;
    dis[s]=0; //这句话也可以不加
    for(int i=1; i<n; i++)
    {
        int tmp=inf, k;
        for(int j=1; j<=n; j++)
        {
            if(!vis[j] && dis[j] < tmp)
            {
                tmp=dis[j];
                k=j;
            }
        }
        if(tmp==inf) //如果没有更新成功,那么接下来也不会再次更新,可以结束循环了。
            break;
        vis[k]=1;
        for(int j=1; j<=n; j++)
        {
            if(!vis[j] && dis[j] > dis[k]+road[k][j])
            dis[j]=dis[k]+road[k][j];
        }
    }
}

和上面相比就多了一句话,然而我的代码却过了,为什么呢?

if(tmp==inf) //如果没有更新成功,那么接下来也不会再次更新,可以结束循环了。
    break;//这句话以后就必须加上了。

原因在于,如果在第一轮寻找最小值时没有找到最小值,就是tmp的值还是inf时,如果没有这句话会怎样?需要注意的是,这时k的值还是不确定的,k的值任意,就有可能越界,而且很有能越界,导致问题,那为什么以前使用没有出现问题呢,这是因为c++开始初始化一般会初始化为零,或者因为数组开的大,k的值还在数组范围内,但是如果多次调用这个函数,而这一次调用的数据范围比上一次要小的话,这个k很有可能还是上次的值(因为编译器优化的原因),那么就有可能越界。

这段代码笔者在《啊哈!算法》和《算法竞赛入门经典》中都看到过,书中都是没有添加上面那句判断语句,只是提到了可以使用而已,发现这中情况后,这句判断语句是一定要加了。

谨以记录,前车之鉴,后事之师。

END

转载于:https://www.cnblogs.com/alking1001/p/11278676.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值