ARC 100 C - Linear Approximation题解---三分法

  • 题目链接:

    https://arc100.contest.atcoder.jp/tasks/arc100_a

  • 分析:

    比赛时做这题想到一个瞎搞的方法就是在平均数上下波动一下取最小值,然后大佬yjw学长说这就是个严格单调单峰函数直接三分法就好了,虽然之前就听过则还是第一次打

  • 三分法

    设有最大值函数f(x)定义域为\([l,r]\),我们在定义域内找两个点\(lmid,rmid(lmid<rmid)\)

    • \(f(lmid)<f(rmid)\),要么\(lmid\)\(rmid\)都在单峰左边,要么\(lmid\)在左边,\(rmid\)在右边,但无论怎样\(lmid\)都在单峰左边,于是将\(l=lmid\)

    • \(f(rmid)<f(lmid)\),分析相似,将\(r=rmid\)

    • \(f(lmid)==f(rmid)\)emmm这个其实我也不知道怎么处理,随便按上面一种情况来吧但总感觉不太稳

  • 代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <map>
#include <queue>
#include <algorithm>
#define ri register int 
#define ll long long
using namespace std;
const int maxn=200005;
const int inf=0x7fffffff;
template <class T>inline void read(T &x){
    x=0;int ne=0;char c;
    while(!isdigit(c=getchar()))ne=c=='-';
    x=c-48;
    while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;
    x=ne?-x:x;
    return ;
}
int n;
ll a[maxn];
ll sum=0;
inline ll solve(int k){
    ll cnt=0;
    for(ri i=1;i<=n;i++)cnt+=abs(a[i]-k);
    return cnt;
}
int main(){
    read(n);
    for(ri i=1;i<=n;i++){
       read(a[i]);
       a[i]=a[i]-i;
    }
    ll ans,lmid,rmid;
    ll l=-1e9,r=1e9;
    while(l<r-1){
        lmid=(l+r)>>1,rmid=(lmid+r)>>1;    
        if(solve(lmid)>solve(rmid))l=lmid;
        else r=rmid;
    }
    if(solve(l)<solve(r))ans=l;
    else ans=r;
    printf("%lld\n",solve(ans));
    return 0;
}

转载于:https://www.cnblogs.com/Rye-Catcher/p/9255304.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值